已知化简(x2+px+8)(x2-3x+q)的结果中不含x2项和x3项.

(1)求p,q的值.

(2)x2-2px+3q是否是完全平方式?如果是,请将其分解因式;如果不是,请说明理由.

【答案】(1);(2)x2-2px+3q不是完全平方式.理由见解析.

【解析】试题分析:(1)展开,化简,让x2项和x3项系数为0.

(2)把(1)中结论代入,不满足完全平方公式.

试题解析:

解:(1)原式=x4+(-3+p)x3+(q-3p+8)x2+(pq-24)x+8q.

∵结果中不含x2项和x3项,∴

解得

(2)x2-2px+3q不是完全平方式.理由如下:

代入x2-2px+3q,得x2-2px+3q=x2-6x+3.

∵x2-6x+9是完全平方式,∴x2-6x+3不是完全平方式.

【题型】解答题
【结束】
23

下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4因式分解的过程.

【解析】
设x2-4x=y,

则原式=(y+2)(y+6)+4(第一步)

=y2+8y+16(第二步)

=(y+4)2(第三步)

=(x2-4x+4)2(第四步)

解答下列问题:

(1)该同学第二步到第三步运用了因式分解的方法是( )

A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式

(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果;

(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.

(1)C;(2)不彻底,(x-2)4;(3)(x-1)4. 【解析】试题分析:(1)从二步到第三步运用了完全平方和公式;(2)x2-4x+4可运用完全平方差公式因式分解;(3)设x2-2x=y,将(x2-2x)(x2-2x+2)+1变形成y(y+2)+1的形式,再进行因式分解; 试题解析: (1)运用了C,两数和的完全平方公式; (2)不彻底; (x2-4x+4)2=...

下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4因式分解的过程.

【解析】
设x2-4x=y,

则原式=(y+2)(y+6)+4(第一步)

=y2+8y+16(第二步)

=(y+4)2(第三步)

=(x2-4x+4)2(第四步)

解答下列问题:

(1)该同学第二步到第三步运用了因式分解的方法是( )

A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式

(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果;

(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.

【答案】(1)C;(2)不彻底,(x-2)4;(3)(x-1)4.

【解析】试题分析:(1)从二步到第三步运用了完全平方和公式;(2)x2-4x+4可运用完全平方差公式因式分解;(3)设x2-2x=y,将(x2-2x)(x2-2x+2)+1变形成y(y+2)+1的形式,再进行因式分解;

试题解析:

(1)运用了C,两数和的完全平方公式;

(2)不彻底;

(x2-4x+4)2=(x-2)4

(3)设x2-2x=y.

(x2-2x)(x2-2x+2)+1

=y(y+2)+1

=y2+2y+1

=(y+1)2…………………………7分

=(x2-2x+1)2

=(x-1)4.

【题型】解答题
【结束】
24

乘法公式的探究及应用.

探究问题

图1是一张长方形纸条,将其剪成长短两条后刚好能拼成图2.

(1) (2)

(1)图1中长方形纸条的面积可表示为_______(写成多项式乘法的形式).

(2)拼成的图2阴影部分的面积可表示为________(写成两数平方差的形式).

(3)比较两图阴影部分的面积,可以得到乘法公式:____.

结论运用

(4)运用所得的公式计算:

=________; =________.

拓展运用:

(5)计算:

(1)(a+b)·(a-b);(2)a2-b2;(3)(a+b)(a-b)=a2-b2;(4)4x2-y2, ;(5) 【解析】试题分析:(1)(2)(3)利用面积证明了平方差公式. (4)应用完全平方公式. (5)利用平方差公式,把每一项展开并计算,约分就可以得到结果. 试题解析: 【解析】 (1)图14-5(1)是一张长方形纸条,将其剪成长短两条后刚好能拼成图1...
 0  319328  319336  319342  319346  319352  319354  319358  319364  319366  319372  319378  319382  319384  319388  319394  319396  319402  319406  319408  319412  319414  319418  319420  319422  319423  319424  319426  319427  319428  319430  319432  319436  319438  319442  319444  319448  319454  319456  319462  319466  319468  319472  319478  319484  319486  319492  319496  319498  319504  319508  319514  319522  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网