如图,已知⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.
(1) 求证:AG与⊙O相切;
(2)若AC=5,AB=12,BE=,求线段OE的长.
据环保中心观察和预测:发生于甲地的河流污染一直向下游方向移动,其移动速度(千米/小时)与时间t(小时)的函数图象如图所示,过线段OC上一点作横轴的垂线,梯形OABC在直线左侧部分的面积即为t(小时)内污染所经过的路程S(千米).
(1)当时,求的值;
(2)将随变化的规律用数学关系式表示出来(t≤30);
(3)若乙城位于甲地的下游,且距甲地174 km,试判断这河流污染是否会侵袭到乙城,如果会,在河流污染发生后多长时间它将侵袭到乙城?如果不会,请说明理由.
如图,在△ABC中,∠C=90°,AC=8,BC=6,P是AC上一点,过P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△EPD.(设AP=x)
(1)若点E落在边BC上,求AP的长;
(2)当AP为何值时,△EDB为等腰三角形.
已知二次函数y=ax2-4ax+a2+2(a<0)图像的顶点G在直线AB上,其中A(?,0)、B(0,3),
对称轴与x轴交于点E.
(1)求二次函数y=ax2-4ax+a2+2的关系式;
(2)点P在对称轴右侧的抛物线上,且AP平分四边形GAEP的面积,求点P坐标;
(3)在x轴上方,是否存在整数m,使得当< x ≤时,抛物线y随x增大而增大,若存在,求出所有满足条件的m值;若不存在,请说明理由.
如图,在直角坐标系中,一次函数y=x+3的图象与x轴、y轴分别交于A、B,平行四边形ABCD中,D(6,0),函数y=x+m图象过点E(4,0),与y轴交于G,动点P从O点沿y轴正方向以每秒2个单位的速度出发,同时,以P为圆心的圆,半径从6个单位起以每秒1个单位的速度缩小,设运动时间为t.
(1)若⊙P与直线EG相切,求⊙P的面积;
(2)以CD为边作等边三角形CDQ,若⊙P内存在Q点,求t的取值范围.
﹣的绝对值是( )
A. 5 B. ﹣5 C. D. ﹣
中国科学家屠呦呦获得2015年诺贝尔生理学或医学奖,她研发的抗疟新药每年为110万婴幼儿免除了疟疾的危害.其中110万用科学记数法表示为( )
A. 11×103 B. 1.1×104 C. 1.1×106 D. 1.1×108
化简x 正确的是( )
A. B. C. ﹣ D. ﹣
下列几何体中,主视图是等腰三角形的是( )
A. B. C. D.
如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )
A. B. 1 C. D. 7