17.定义正整数m,n的运算:m△n=$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+$\frac{1}{{m}^{4}}$+…+$\frac{1}{{m}^{n}}$
(1)计算3△2的值为$\frac{4}{9}$;运算“△”满足交换规律吗?回答:否(填“是”或“否”)
(2)探究:计算2△10=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{2{0}^{10}}$的值.
为解决上面的问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系的几何图形结合起来,最终解决问题.
如图所示,第一次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$;
第2此分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为$\frac{1}{2}$$+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;依此类推,…
第10次分割,把二次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}$-$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{10}}$,最后空白部分的面积是$\frac{1}{{2}^{10}}$;根据第10次分割图可以得出计算结果:$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{10}}$=1-$\frac{1}{{2}^{10}}$.
进一步分析可得出,$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
(3)已知n是正整数,计算4△n=$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+$\frac{1}{{4}^{4}}$+…+$\frac{1}{{4}^{n}}$的结果.
按指定方法解决问题:请仿照以上做法,只需画出第n次分割图并作标注,写出最终结果的推理步骤;或借用以上结论进行推理,写出必要的步骤.
 0  312274  312282  312288  312292  312298  312300  312304  312310  312312  312318  312324  312328  312330  312334  312340  312342  312348  312352  312354  312358  312360  312364  312366  312368  312369  312370  312372  312373  312374  312376  312378  312382  312384  312388  312390  312394  312400  312402  312408  312412  312414  312418  312424  312430  312432  312438  312442  312444  312450  312454  312460  312468  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网