2.【课本节选】
反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线.当k>0时,双曲线两个分支分别在一、三象限,在每一个象限内,y随x的增大而减小(简称增减性);反比例函数的图象关于原点对称(简称对称性).
这些我们熟悉的性质,可以通过说理得到吗?
【尝试说理】
我们首先对反比例函数y=$\frac{k}{x}$(k>0)的增减性来进行说理.
如图,当x>0时.
在函数图象上任意取两点A、B,设A(x1,$\frac{k}{{x}_{1}}$),B(x2,$\frac{k}{{x}_{2}}$),
且0<x1<x2
下面只需要比较$\frac{k}{{x}_{1}}$和$\frac{k}{{x}_{2}}$的大小.
$\frac{k}{{x}_{2}}$-$\frac{k}{{x}_{1}}$=$\frac{k({x}_{1}-{x}_{2})}{{{x}_{1}x}_{2}}$
∵0<x1<x2,∴x1-x2<0,x1x2>0,且 k>0.
∴$\frac{k({x}_{1}-{x}_{2})}{{{x}_{1}x}_{2}}$<0.即$\frac{k}{x_2}$<$\frac{k}{x_1}$.
这说明:x1<x2时,$\frac{k}{{x}_{1}}$>$\frac{k}{{x}_{2}}$.也就是:自变量值增大了,对应的函数值反而变小了.
即:当x>0时,y随x的增大而减小.同理,当x<0时,y随x的增大而减小.
(1)试说明:反比例函数y=$\frac{k}{x}$ (k>0)的图象关于原点对称.
【运用推广】
(2)分别写出二次函数y=ax2 (a>0,a为常数)的对称性和增减性,并进行说理.
对称性:二次函数y=ax2(a>0,a为常数)的图象关于y轴成轴对称;
增减性:当x>0时,y随x增大而增大;当x<0时,y随x增大而减小..
说理:①∵在二次函数y=ax2(a>0,a为常数)的图象上任取一点Q(m,n),于是n=am2
∴点Q关于y轴的对称点Q1(-m,n).
而n=a(-m)2,即n=am2
这说明点Q1也必在在二次函数y=ax2(a>0,a为常数)的图象上.
∴二次函数y=ax2(a>0,a为常数)的图象关于y轴成轴对称;
②在二次函数y=ax2(a>0,a为常数)的图象上任取两点A、B,
设A(m,am2),B(n,an2),且0<m<n.
则an2-am2=a(n+m)(n-m),
∵n>m>0,
∴n+m>0,n-m>0;
∵a>0,
∴an2-am2=a(n+m)(n-m)>0,即an2>am2
而当m<n<0时,n+m<0,n-m>0;
∵a>0,
∴an2-am2=a(n+m)(n-m)<0.即an2<am2
这说明,当x>0时,y随x增大而增大;当x<0时,y随x增大而减小;.
【学以致用】
(3)对于函数y=x2+$\frac{2}{x}$ (x>0),
请你从增减性的角度,请解释为何当x=1时函数取得最小值.
 0  282820  282828  282834  282838  282844  282846  282850  282856  282858  282864  282870  282874  282876  282880  282886  282888  282894  282898  282900  282904  282906  282910  282912  282914  282915  282916  282918  282919  282920  282922  282924  282928  282930  282934  282936  282940  282946  282948  282954  282958  282960  282964  282970  282976  282978  282984  282988  282990  282996  283000  283006  283014  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网