搜索
已知二次函数y=ax
2
+bx+c的图象如图所示,其对称轴为直线x=-1,给出下列结论:(1)b
2
>4ac; (2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a-b+c<0.其中正确的结论有( )
A、2个
B、3个
C、4个
D、5个
如图,点G是△ABC的重心,点D、E分别在边AB、AC上,DE过点G,且DE∥BC,则
DE
BC
的值为
.
若一个不等边三角形的两条高分别为4和9,另一条高为整数,则高的值为
.
已知△ABC与△A′B′C′中,AB=A′B′,BC=B′C′,∠BAC=∠B′A′C′=100°.
(1)求证:△ABC≌△A′B′C′;
(2)上问中,若将条件改为AB=A′B′,BC=B′C′,∠BAC=∠B′A′C′=70°,其他条件不变,那么结论是否成立?为什么?
用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,如果使三角尺60°角的顶点与点A重合,两边分别与AB、AC重合,将三角尺绕A点按逆时针方向旋转.如图,三角尺的两边分别与菱形的两边BC、CD相交于点E、F.
(1)EC+CF的长度是否发生变化?并证明你的结论;
(2)连接EF,求△AEF的面积的最小值.
如图,在⊙O中,AD∥BC,AC⊥BD垂足为E.
(1)求证:BE=CE;
(2)若AD=4,M为AD的中点,延长ME交BC于F,
①判断EF与BC的位置关系;
②求OF的长度.
如图所示,已知△ABC和△BDE均为等边三角形,且A、B、E三点共线,连接AD、CE,若∠BAD=39°,那么∠AEC=
度.
如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若BC=8,BE=5,求△BDE的周长.
如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC.
(1)求证:△BDA≌△CEA;
(2)请判断△ADE是什么三角形,并说明理由.
已知:在∠ABC中,D是∠ABC平分线上一点,E、F分别在AB、BC上,且DE=DF. 试判断∠BED与∠BFD的关系并证明.
下面方框中是小明的判断与证明:
解:∠BED=∠BFD,
证明如下:如图:过点D作DM⊥AB,DN⊥BC,垂足分别为M、N,
∴△DEM和△DFN是直角三角形,
∵BD是∠ABC的平分线,DM⊥AB,DN⊥BC,
∴DM=DN.
在Rt△DEM与Rt△DFN中,
DE=DF
DM=DN
,
∴Rt△DEM≌Rt△DFN(HL),
∴∠MED=∠NFD,
∴∠BED=∠BFD.
数学老师认为小明的判断不完整,请你认真思考给出完整的判断并证明.
0
250609
250617
250623
250627
250633
250635
250639
250645
250647
250653
250659
250663
250665
250669
250675
250677
250683
250687
250689
250693
250695
250699
250701
250703
250704
250705
250707
250708
250709
250711
250713
250717
250719
250723
250725
250729
250735
250737
250743
250747
250749
250753
250759
250765
250767
250773
250777
250779
250785
250789
250795
250803
366461
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案