题目内容

26、在括号内填写理由.(1)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD (
同旁内角互补,两直线平行

∴∠B=∠DCE(
两直线平行,同位角相等

又∵∠B=∠D(已知 ),
∴∠DCE=∠D (
等量代换

∴AD∥BE(
内错角相等,两直线平行

∴∠E=∠DFE(
两直线平行,内错角相等


(2)已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB
证明:∵DG⊥BC,AC⊥BC(
已知

∴∠DGB=∠ACB=90°(
垂直的定义

∴DG∥AC(
同位角相等,两直线平行

∴∠2=
∠DCA
两直线平行,同位角相等

∵∠1=∠2(
已知
)∴∠1=∠DCA(
等量代换

∴EF∥CD(
同位角相等,两直线平行

∴∠AEF=∠ADC(
两直线平行,同位角相等

∵EF⊥AB∴∠AEF=90°  (
垂直的定义

∴∠ADC=90° (
等量代换

即CD⊥AB(
垂直的定义
分析:根据平行线的性质与判定定理即可作出解决.
解答::∵∠B+∠BCD=180°(已知),
∴AB∥CD ( 同旁内角互补,两直线平行)
∴∠B=∠DCE( 两直线平行,同位角相等)
又∵∠B=∠D(已知 ),
∴∠DCE=∠D ( 等量代换)
∴AD∥BE( 内错角相等,两直线平行)
∴∠E=∠DFE( 两直线平行,内错角相等)
(2)已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB
证明:∵DG⊥BC,AC⊥BC( 已知)
∴∠DGB=∠ACB=90°( 垂直的定义)
∴DG∥AC( 同位角相等,两直线平行)
∴∠2=∠DCA( 两直线平行,同位角相等)
∵∠1=∠2( 已知)∴∠1=∠DCA( 等量代换)
∴EF∥CD( 同位角相等,两直线平行)
∴∠AEF=∠ADC( 两直线平行,同位角相等)
∵EF⊥AB∴∠AEF=90°  ( 垂直的定义)
∴∠ADC=90° ( 等量代换)
即CD⊥AB( 垂直的定义)
点评:本题考查了平行线的性质定理以及判定定理,关键性质定理与判定定理二者之间的区别以及正确掌握同位角、内错角、同旁内角的定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网