题目内容

6.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.
(1)试问:CG是⊙O的切线吗?说明理由;
(2)求证:E为OB的中点;
(3)若AB=10,求CD的长.

分析 (1)由CG∥AD,CF⊥AD,易得CF⊥CG,即可证得CG是⊙O的切线;
(2)首先连接BD,易证得△BDE∽△OCE,然后由相似三角形的对应边成比例,证得E为OB的中点;
(3)首先由E为OB的中点,AB=10,求得OE的长,然后由勾股定理求得CE的长,继而求得答案.

解答 (1)解:CG是⊙O的切线.
理由:∵CG∥AD,
∴∠FCG+∠CFD=180°,
∵CF⊥AD,
∴∠CFD=90°,
∴∠FCG=90°,
即OC⊥CG,
又∵OC为⊙O的半径,
∴CG是⊙O的切线;

(2)证明:连接BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
又∵∠AFO=90°,
∴∠ADB=∠AFO,
∴CF∥BD,
∴△BDE∽△OCE,
∴$\frac{BE}{OE}=\frac{DE}{CE}$,
∵AE⊥CD,
且AE过圆心O,
∴CE=DE,
∴BE=OE,
∴点E为OB的中点;

(3)解:∵AB=10,
∴OC=$\frac{1}{2}$AB=5,
又∵BE=OE,
∴OE=$\frac{5}{2}$,
∵AB⊥CD,
∴CE=$\sqrt{O{C^2}-O{E^2}}=\sqrt{{5^2}-{{({\frac{5}{2}})}^2}}=\frac{5}{2}\sqrt{3}$,
∴CD=2CE=$5\sqrt{3}$.

点评 此题考查了切线的性质与判定、勾股定理、垂径定理以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网