题目内容

12.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为(  )
A.$\frac{40}{3}$B.$\frac{15}{4}$C.$\frac{24}{5}$D.6

分析 依据勾股定理可求得AB的长,然后在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E,先证明C′E=CE,然后可得到CE+EF=C′E+EF,然后依据垂直线段最短可知当点C′F⊥AC时,CE+EF有最小值,最后利用相似三角形的性质求解即可.

解答 解:如图所示:在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E.

在Rt△ABC中,依据勾股定理可知BA=10.
∵AC=AC′,∠CAD=∠C′AD,AE=C′E,
∴△AEC≌△AEC′.
∴CE=EC′.
∴CE+EF=C′E+EF.
∴当C′F⊥AC时,CE+EF有最小值.
∵C′F⊥AC,BC⊥AC,
∴C′F∥BC.
∴△AFC′∽△ACB.
∴$\frac{FC′}{BC}$=$\frac{AC′}{AB}$,即$\frac{FC′}{8}$=$\frac{6}{10}$,解得FC′=$\frac{24}{5}$.
故选:C.

点评 本题主要考查的是相似三角形的性质、勾股定理的应用、轴对称图形的性质,熟练掌握相关图形的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网