题目内容

1.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(-y+1,x+2),我们把点P'(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…Pn、…,若点P1的坐标为(2,0),则点P2017的坐标为(2,0).

分析 求得点P2、P3、P4、P5的值,即可发现其中规律,即可解题.

解答 解:P1 坐标为(2,0),则P2坐标为(1,4),P3坐标为(-3,3),P4坐标为(-2,-1),P5坐标为(2,0),
∴Pn的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环,
∵2017=2016+1=4×504+1,
∴P2017 坐标与P1点重合,
故答案为(2,0).

点评 本题考查了学生发现点的规律的能力,本题中找到Pn坐标得规律是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网