题目内容

如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H.

(1)求证:

(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;

(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFFQ与△ABC重叠部分的面积为S,求S与t的函数关系式.

【答案】(1)证明见解析;(2)当x=5时,S矩形EFPQ有最大值,最大值为20;(3)

【解析】试题分析:(1)本题利用相似三角形的性质——相似三角形的对应边上的高之比等于相似比解决;(2)根据第一问的结论,即可根据矩形的面积公式得到关于矩形EFPQ的面积和x的函数关系式,根据函数的性质即可得到矩形的最大面积及对应的x的值;(3)此题要理清几个关键点,当矩形的面积最大时,由(2)可知此时EF=5,EQ=4;易证得△CPF是等腰Rt△,则PC=PF=4,QC=QP+PC=9;
一、P、C重合时,矩形移动的距离为PC(即4),运动的时间为4s;
二、E在线段AC上时,矩形移动的距离为9-4=5,运动的时间为5s;
三、Q、C重合时,矩形运动的距离为QC(即9),运动的时间为9s;
所以本题要分三种情况,分别写出解析式即可.

试题解析:

(1)∵ 四边形EFPQ是矩形,∴ EF∥QP.∴ △AEF∽△ABC.

又∵ AD⊥BC,

∴ AH⊥EF,∴

(2)由(1)得,∴ AH=x.

∴ EQ=HD=AD-AH=8-x,

∴ S矩形EFPQ=EF·EQ=x (8-x) =-x2+8 x=-(x-5)2+20.

∵ -<0, ∴ 当x=5时,S矩形EFPQ有最大值,最大值为20.

(3)如图1,由(2)

得EF=5,EQ=4.

∵∠C=45°,∴ △FPC是等腰直角三角形.

∴ PC=FP=EQ=4,QC=QP+PC=9.

分三种情况讨论:① 如图2.当0≤t<4时,

设EF、PF分别交AC于点M、N,则△MFN是等腰直角三角形,

∴ FN=MF=t.

∴S=S矩形EFPQ-SRt△MFN=20-t2=-t2+20;

②如图3,当4≤t<5时,则ME=5-t,QC=9-t.

∴ S=S梯形EMCQ= [(5-t)+(9-t )]×4=-4t+28;

③如图4,当5≤t≤9时,设EQ交AC于点K,则KQ=QC=9-t.

∴ S=S△KQC= (9-t)2= ( t-9)2.

综上所述:S与t的函数关系式为:

点睛:此题主要考查了矩形、等腰直角三角形的性质,相似三角形的判定和性质及二次函数的应用等知识,同时还考查了分类讨论的数学思想.

【题型】解答题
【结束】
12

已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.

(1)求实数k的取值范围;

(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.

(1)当k≤时,原方程有两个实数根(2)不存在实数k,使得x1·x2-x12-x22≥0成立 【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决. 试题解析: (1) ,解得 (2)由 , 由根与系数的关系可得: 代入得: , 化简得: , 得. 由于的取值范围为, 故不存在k使。 ...
练习册系列答案
相关题目

如图,在平面直角坐标系中,已知抛物线C1:y=的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.

(1)结合图象,直接写出不等式x2+6x+2<kx+b的解集;

(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;

(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,

求3﹣4q的最大值.

【答案】(1)﹣2<x<0(2)y=﹣x2+6x﹣2(3)当q=时,3﹣4q取最大值,最大值为﹣7

【解析】试题分析:(1)、首先根据二次函数的解析式分别求出点M和点N的坐标,然后根据图像得出不等式的取值范围;(2)、根据翻折得出抛物线的顶点坐标和开口方向以及大小,从而得出抛物线的函数解析式;(3)、首先将点M和点N的坐标代入一次函数解析式得出一次函数的解析式,然后设平移后的解析式为y=3x+2-q,然后根据与抛物线有交点得出方程有实数根,从而得出最大值.

试题解析:(1)令y=中x=0,则y=2,

∴N(0,2); ∵y==(x+2)2﹣4, ∴M(﹣2,﹣4).

观察函数图象,发现:当﹣2<x<0时,抛物线C1在直线l的下方,

∴不等式x2+6x+2<kx+b的解集为﹣2<x<0.

(2)∵抛物线C1:y=的顶点为M(﹣2,﹣4),

沿x轴翻折后的对称点坐标为(﹣2,4). ∵抛物线C2的顶点与点M关于原点对称,

∴抛物线C2的顶点坐标为(2,4), ∴p=2﹣(﹣2)=4.

∵抛物线C2与C1开口大小相同,开口方向相反,

∴抛物线C2的解析式为y=﹣(x﹣2)2+4=﹣x2+6x﹣2.

(3)将M(﹣2,﹣4)、N(0,2)代入y=kx+b中,得: ,解得:

∴直线l的解析式为y=3x+2.

∵若直线l沿y轴向下平移q个单位长度后与抛物线C2存在公共点,

∴方程﹣x2+6x﹣2=3x+2﹣q有实数根,即3x2﹣6x+8﹣2q有实数根,

∴△=(﹣6)2﹣4×3×(8﹣2q)≥0,解得:q≥. ∵﹣4<0,

∴当q=时,3﹣4q取最大值,最大值为﹣7.

点睛:本题主要考查的就是二次函数的图形与性质、一次函数的性质、二次函数与一次函数的大小比较的方法以及函数与方程之间的关系,属于中上难度的题目.在解答函数大小比较的题目时,我们首先根据方程的思想得出两个函数的交点坐标,然后过交点作x轴的垂线,然后根据函数所处的位置进行比较大小得出答案;函数关于x轴对称,则顶点坐标的纵坐标变为相反数,开口方向发生改变,开口大小不改变;在求直线与抛物线是否有交点时,则联立成方程,然后根据一元二次方程根的判别式来进行判定.

【题型】解答题
【结束】
17

某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示:

设该绿茶的月销售利润为w(元)(销售利润=单价×销售量-成本)

(1)请根据上表,求出y与x之间的函数关系式(不必写出自变量x的取值范围);

(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?

(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?

(1); (2),当时, ; (3)当销售单价为元时,在全部收回投资的基础上使第二个月的利润不低于1700元. 【解析】【试题分析】(1)根据表格的数据.易得销售单价每升高5元,销售量下降10Kg,即w是x的一次函数,故设设,将(70,100),(75,90)代入上式得: 解得: ,则; (2)销售利润=单位质量的利润乘以销售量,即 ,化为顶点式得, ,当时, ...

如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.

【答案】200mm2.

【解析】试题分析:根据三视图可知立体图形下面的长方体的长、宽、高分别为8mm,6mm,2mm,上面的长方体的长、宽、高分别为4mm,2mm,4mm.由此计算这个立体图形的表面积即可.

试题解析:

根据三视图可知立体图形下面的长方体的长、宽、高分别为8mm,6mm,2mm,上面的长方体的长、宽、高分别为4mm,2mm,4mm.

则这个立体图形的表面积为:2(8×6+6×2+8×2)+2(4×2+2×4+4×4)-2×4×2=200(mm2).

答:这个立体图形的表面积为200mm2.

【题型】解答题
【结束】
7

如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.

(1)求新传送带AC的长度;

(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物是否需要挪走,并说明理由.

(1)5.6m;(2)应挪走. 【解析】试题解析:试题分析:(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长. (2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可. 试题解析:(1)如图, 在Rt△ABD中,AD=ABsin45°=4. 在Rt△ACD中, ∵∠ACD=30...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网