题目内容

11.实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,若每平方米草皮需要300元,学校需要投入多少资金买草皮?

分析 连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.

解答 解:连结AC,如图所示:
在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,
由勾股定理得:AC=$\sqrt{{8}^{2}+{6}^{2}}$=10(米),
∵AC2+BC2=102+242=676,AB2=262=676,
∴AC2+BC2=AB2
∴∠ACB=90°,
∴该区域面积S=S△ACB-S△ADC=$\frac{1}{2}$×10×24-$\frac{1}{2}$×6×8=96(平方米),
96×300=28800(元).
∴学校需要投入28800元资金买草皮.

点评 本题考查了勾股定理,三角形面积,勾股定理的逆定理的应用;解此题的关键是求出区域的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网