题目内容

8.如图,以矩形ABCD的A为圆心,AD长为半径画弧,交AB于F点;再以C为圆心,CD长为半径画弧,交AB于E点.若AD=5,CD=$\frac{17}{3}$,则EF的长度为何?(  )
A.2B.3C.$\frac{2}{3}$D.$\frac{7}{3}$

分析 连接CE,可得出CE=CD,由矩形的性质得到BC=AD,在直角三角形BCE中,利用勾股定理求出BE的长,由AB-AF求出BF的长,由BE-BF求出EF的长即可.

解答 解:连接CE,则CE=CD=$\frac{17}{3}$,BC=AD=5,
∵△BCE为直角三角形,
∴BE=$\sqrt{(\frac{17}{3})^{2}-{5}^{2}}$=$\frac{8}{3}$,
又∵BF=AB-AF=$\frac{17}{3}$-5=$\frac{2}{3}$,
∴EF=BE-BF=$\frac{8}{3}$-$\frac{2}{3}$=2.
故选A

点评 此题考查了矩形的性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网