ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÅ×ÎïÏßy=ax2+2x+cÓëxÖá½»ÓÚA£¨1£¬0£©ºÍµãB£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3£©£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©Èçͼ1£¬ÒÑÖªµãHµÄ×ø±êΪ£¨0£¬1£©£¬ÉèµãMΪyÖá×ó²àÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬ÊÔ²ÂÏ룺ÊÇ·ñ´æÔÚÕâÑùµÄµãM£¬Ê¹|MA-MH|µÄÖµ×î´ó£¬Èç¹û´æÔÚ£¬ÇëÇó³öµãMµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬¹ýxÖáÉϵãE£¨-2£¬0£©×÷ED¡ÍAB½»Å×ÎïÏßÓÚµãD£¬ÔÚyÖáÉÏÕÒÒ»µãF£¬Ê¹¡÷EDFµÄÖܳ¤×îС£¬Çó³ö´ËʱµãFµÄ×ø±ê£»
£¨4£©Èçͼ3£¬ÒÑÖªµãN£¨0£¬-1£©£®ÎÊÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¨µãQÔÚyÖáµÄ×ó²à£©£¬Ê¹µÃ¡÷QNCµÄÃæ»ýÓë¡÷QNAµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÅ×ÎïÏßy=x2+bx+cÓëxÖá½»ÓÚµãA£¨1£¬0£©ºÍµãB£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3£©£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©×÷Ö±ÏßAH£¬ÓëÅ×ÎïÏߵĽ»µãM¼´ÎªËùÇó£»´Ëʱ|MA-MH|µÄÖµ×î´ó£¬¸ù¾Ý´ý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßAHµÄ½âÎöʽ£¬È»ºóºÍÅ×ÎïÏß½âÎöʽÁªÁ¢·½³Ì£¬½â·½³Ì¼´¿ÉÇóµÃMµãµÄ×ø±ê£»
£¨3£©ÕÒ³öEµã¹ØÓÚyÖáµÄ¶Ô³ÆµãE¡ä£¨2£¬0£©£¬Á¬½ÓDE¡ä½»yÖáÓÚF£¬´Ëʱ£¬EF+DF=E¡äF+DF=E¡äD£¬¸ù¾ÝDEÊǶ¨Öµ£¬ËùÒÔ´Ëʱ¡÷EDFµÄÖܳ¤×îС£¬¸ù¾Ý´ý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßDE¡äµÄ½âÎöʽ£¬È»ºóÁîx=0£¬¼´¿ÉÇóµÃFµÄ×ø±ê£»
£¨4£©·Ö±ð´ÓQN¡ÎACÓëQNÓëAC²»Æ½ÐÐÈ¥·ÖÎö£¬×¢ÒâÏÈÇóµÃÖ±ÏßQNµÄ½âÎöʽ£¬¸ù¾Ý½»µãÎÊÌâ¼´¿ÉÇóµÃ´ð°¸£¬Ð¡ÐIJ»ÒªÂ©½â£»
½â´ð
½â£º£¨1£©ÓÉÌâÒâµÃ£º$\left\{\begin{array}{l}{a+2+c=0}\\{c=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=1}\\{c=-3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=x2+2x-3£»
£¨2£©´æÔÚ£¬
Èçͼ1£¬×÷Ö±ÏßAH£¬ÓëÅ×ÎïÏߵĽ»µãM¼´ÎªËùÇó£»´Ëʱ|MA-MH|µÄÖµ×î´ó£¬
ÉèÖ±ÏßAHµÄ½âÎöʽΪy=kx+b£¬![]()
¡à$\left\{\begin{array}{l}{k+b=0}\\{b=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=1}\end{array}\right.$£¬
¡àÖ±ÏßAHµÄ½âÎöʽΪy=-x+1£¬
½â$\left\{\begin{array}{l}{y=-x+1}\\{y={x}^{2}+2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-4}\\{y=5}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$£¬
¡ßµãMÔÚyÖá×ó²à£¬
¡àM£¨-4£¬5£©£»
£¨3£©Èçͼ2£¬ÕÒ³öEµã¹ØÓÚyÖáµÄ¶Ô³ÆµãE¡ä£¨2£¬0£©£¬
Á¬½ÓDE¡ä½»yÖáÓÚF£¬´Ëʱ£¬EF+DF=E¡äF+DF=E¡äD£¬
¡ßµãE£¨-2£¬0£©£¬ED¡ÍAB½»Å×ÎïÏßÓÚµãD£¬
¡àDµÄºá×ø±êΪ-2£¬´úÈëy=x2+2x-3µÃy=4-4-3=-3£¬
¡àD£¨-2£¬-3£©£¬![]()
¡àDE=3ÊǶ¨Öµ£¬
¡à´Ëʱ¡÷EDFµÄÖܳ¤×îС£¬
ÉèÖ±ÏßDE¡äµÄ½âÎöʽΪy=mx+n£¬
¡à$\left\{\begin{array}{l}{-2m+n=-3}\\{2m+n=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{3}{4}}\\{n=-\frac{3}{2}}\end{array}\right.$£¬
¡ày=$\frac{3}{4}$x-$\frac{3}{2}$£¬
Áîx=0£¬Ôòy=-$\frac{3}{2}$£¬
¡àF£¨0£¬-$\frac{3}{2}$£©£»
£¨4£©´æÔÚ£»![]()
Èçͼ¢Ù£¬µ±QN¡ÎACʱ£¬µãA£¬µãCµ½QNµÄ¾àÀëÏàµÈ£¬
¡àS¡÷QNC=S¡÷QNA£¬
¡ßA£¨1£¬0£©£¬C£¨0£¬-3£©£®
¡àACµÄ½âÎöʽΪy=3x-3£¬
¡ßQN¡ÎAC£¬N£¨0£¬-1£©£¬
¡àQNµÄ½âÎöʽΪy=3x-1£¬
½â$\left\{\begin{array}{l}{y=3x-1}\\{y={x}^{2}+2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-1}\\{y=-4}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$£¬
¡àQ£¨-1£¬-4£©£»
Èçͼ¢Ú£¬µ±QNÓëAC²»Æ½ÐÐʱ£¬
¡ßµãA£¬Cµ½Ö±ÏßQNµÄ¾àÀëÏàµÈ£¬
¡àÖ±ÏßQN¹ýÏß¶ÎACµÄÖеãM£¨$\frac{1}{2}$£¬-$\frac{3}{2}$£©£®
¡àÖ±ÏßQNµÄ½âÎöʽΪy=-x-1£¬
½â$\left\{\begin{array}{l}{y=-x-1}\\{y={x}^{2}+2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{-3+\sqrt{17}}{2}}\\{y=\frac{1-\sqrt{17}}{2}}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=\frac{-3-\sqrt{17}}{2}}\\{y=\frac{1-\sqrt{17}}{2}}\end{array}\right.$£¬
¡àQ£¨-$\frac{3+\sqrt{17}}{2}$£¬$\frac{1+\sqrt{17}}{2}$£©£¬
¡à´æÔÚµãQ£¨-$\frac{3+\sqrt{17}}{2}$£¬$\frac{1+\sqrt{17}}{2}$£©»ò£¨-1£¬-4£©£®
µãÆÀ ´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬Ö±ÏßÓë¶þ´Îº¯ÊýµÄ½»µãÎÊÌâÒÔ¼°Èý½ÇÐÎÃæ»ýÎÊÌâµÄÇó½âµÈ֪ʶ£®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇ×¢ÒâÊýÐνáºÏ˼Ïë¡¢·ÖÀàÌÖÂÛ˼ÏëÓë·½³Ì˼ÏëµÄÓ¦ÓÃ
| ×î¸ßÆøÎ£¨¡æ£© | 21 | 22 | 25 | 24 | 23 | 26 |
| ÌìÊý | 1 | 2 | 4 | 3 | 3 | 2 |
| A£® | 22 | B£® | 23 | C£® | 23.5 | D£® | 24 |
| A£® | x£¼2 | B£® | x£¾-3 | C£® | -3£¼x£¼1 | D£® | x£¼-3»òx£¾1 |