题目内容

1.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,若∠P=40°,则∠DOE=70°.

分析 分别连接OA、OB、OC,由四边形内角和可求得∠AOB,再根据切线和定理可求得∠DOC+∠EOC,则可求得答案.

解答 解:
如图,分别连接OA、OB、OC,
∵PA、PB、DE分别切⊙O于点A、B、C,
∴∠OAP=∠OBP=90°,
∴∠AOB=360°-90°-90°-∠P=140°,
∵DA、DC是⊙O的切线,
∴OD平分∠AOC,
∴∠DOC=$\frac{1}{2}$∠AOC,
同理可得∠EOC=$\frac{1}{2}$∠BOC,
∴∠DOE=∠DOC+∠EOC=$\frac{1}{2}$(∠AOC+∠BOC)=$\frac{1}{2}$∠AOB=70°,
故答案为:70°.

点评 本题主要考查切线的性质及切线长定理,根据切线长定理求得∠DOE=$\frac{1}{2}$∠AOB是解题的关键,注意整体思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网