ÌâÄ¿ÄÚÈÝ
9£®ÔĶÁ£ºÈçͼ1£¬ÔÚÖ±½Ç¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC£¬BCΪֱ½Ç±ß£¬ABΪб±ß£¬ÉèBC=a£¬AC=b£¬AB=c£¬Ôòa2+b2=c2ÀýÈ磬AC=8£¬BC=6£¬Ôò¿ÉµÃAB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10
¸ù¾ÝÔĶÁ²ÄÁÏ£¬Íê³ÉÌâÄ¿£º
Èçͼ2ÓÐÒ»¿éÖ±½ÇÈý½ÇÐεÄÂ̵أ¬Á¿µÃÁ½ÌõÖ±½Ç±ß³¤·Ö±ðΪ6cm£¬8cm£®ÏÖÔÚÒª½«Â̵ØÀ©³ä³ÉµÈÑüÈý½ÇÐΣ¬ÇÒÀ©³ä²¿·ÖÊÇÒÔ8mΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¬ÇóÀ©³äºóµÈÑüÈý½ÇÐÎÂ̵صÄÖܳ¤£®
·ÖÎö ¸ù¾ÝÌâĿҪÇóÀ©³ä³ÉACΪֱ½Ç±ßµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬¼´AC=BC£¬¡ÏC=90¡ã£¬È»ºóÓɹ´¹É¶¨ÀíÇóµÃABµÄ³¤£¬×îºóÇó³öÀ©³äºóµÄµÈÑüÖ±½ÇÈý½ÇÐεÄÖܳ¤¼´¿É£®
½â´ð ½â£º¢ÙÈçͼ1£¬ÑÓ³¤BCµ½D£¬Ê¹AB=AD£¬Á¬½ÓAD£¬ÔòAB=AD=10ʱ£¬¿ÉÇóCD=CB=6µÃ¡÷ABDµÄÖܳ¤Îª32m£»
¢ÚÈçͼ2£¬µ±AB=BD=10ʱ£¬¿ÉÇóCD=4£¬
Óɹ´¹É¶¨ÀíµÃ£ºAD=4$\sqrt{5}$µÃ¡÷ABDµÄÖܳ¤Îª£¨20+4$\sqrt{5}$£©m£®
¢ÛÈçͼ3£¬µ±ABΪµ×ʱ£¬ÉèAD=BD=x£¬ÔòCD=x-6£¬Óɹ´¹É¶¨ÀíµÃ£ºx=$\frac{25}{3}$£¬
µÃ¡÷ABDµÄÖܳ¤Îª$\frac{80}{3}$m£® ![]()
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶Ô¹´¹É¶¨Àí£¬µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶµãµÄÀí½âºÍÕÆÎÕ£¬ÄÜͨ¹ý·ÖÀàÇó³öµÈÑüÈý½ÇÐεÄËùÓÐÇé¿öÊǽâ´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®Èç¹ûÕýÊýx¡¢yͬʱÀ©´ó10±¶£¬ÄÇôÏÂÁзÖʽÖÐÖµËõС10±¶µÄÊÇ£¨¡¡¡¡£©
| A£® | $\frac{x-1}{y-1}$ | B£® | $\frac{x+1}{y+1}$ | C£® | $\frac{x^2}{y^3}$ | D£® | $\frac{x}{x+y}$ |
18£®ÒÑÖªx=2-$\sqrt{3}$£¬Ôò´úÊýʽ$£º{x}^{2}+£¨2+\sqrt{3}£©x+4\sqrt{3}$µÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 8 | B£® | 8$\sqrt{3}$ | C£® | 2$+\sqrt{3}$ | D£® | 7 |