题目内容

14.如图是二次函数y=ax2+bx+c图象的一部分,其图象的对称轴是直线x=1,且过点A(3,0),则下列结论正确的是(  )
A.ac>0B.4a+2b+c<0C.a-b+c>0D.b2>4ac

分析 根据抛物线与x轴有两个交点有b2-4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(-1,0),所以a-b+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.

解答 解:∵抛物线开口向下,
∴a<0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴ac<0,所以A选项错误;
∵当x=2时,y>0,
∴4a+2b+c>0,所以B选项错误;
∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,
∴抛物线与x轴的另一个交点为(-1,0),
∴a-b+c=0,所以C选项错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,即b2>4ac,
所以D选项正确.
故选D.

点评 本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-$\frac{b}{2a}$;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网