题目内容

观察下列各等式:0<a<1,
1
2×3
=
1
2
-
1
3
1
3×5
=
1
2
(
1
3
-
1
5
)
,…根据你发现的规律,计算:
1
1×4
+
1
4×7
+
1
7×10
+…+
1
(3n-2)(3n+1)
=
 
(n为正整数).
分析:由已知规律,可知原式=
1
3
(1-
1
4
+
1
4
-
1
7
+…+
1
3n-2
-
1
3n+1
)=
1
3
(1-
1
3n+1
)=
n
3n+1
解答:解:∵
1
2×3
=
1
2
-
1
3
1
3×5
=
1
2
1
3
-
1
5
),
所以
1
1×4
=
1
3
(1-
1
4
),
1
4×7
=
1
3
1
4
-
1
7
),…,
1
(3n-2)(3n+1)
=
1
3
1
3n-2
-
1
3n+1
),
∴原式=
1
3
(1-
1
4
+
1
4
-
1
7
+…+
1
3n-2
-
1
3n+1
)=
1
3
(1-
1
3n+1
)=
n
3n+1
点评:找得到规律:若左边分母中的两个因数的差是m,则右边应乘以
1
m
(m为整数).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网