题目内容
观察下列各等式:0<a<1,| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 1×4 |
| 1 |
| 4×7 |
| 1 |
| 7×10 |
| 1 |
| (3n-2)(3n+1) |
分析:由已知规律,可知原式=
(1-
+
-
+…+
-
)=
(1-
)=
.
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
| n |
| 3n+1 |
解答:解:∵
=
-
,
=
(
-
),
所以
=
(1-
),
=
(
-
),…,
=
(
-
),
∴原式=
(1-
+
-
+…+
-
)=
(1-
)=
.
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
所以
| 1 |
| 1×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4×7 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴原式=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
| n |
| 3n+1 |
点评:找得到规律:若左边分母中的两个因数的差是m,则右边应乘以
(m为整数).
| 1 |
| m |
练习册系列答案
相关题目