题目内容

4.解方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$时,应该正确地解得$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$,小明由于看错了系数c,得到的解为$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$则a-b-c=1.

分析 把正确和错误结果代入方程组第一个方程求出a与b的值,将正确结果代入第二个方程求出c的值,即可求出所求.

解答 解:把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$与$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$代入得:$\left\{\begin{array}{l}{3a-2b=2}\\{-a+b=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=4}\\{b=5}\end{array}\right.$,
把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$代入得:3c+14=8,
解得:c=-2,
则a-b-c=4-5+2=1.
故答案为:1

点评 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网