题目内容
【题目】如图1,在线段BE上取一点C,分别以CB,CE为腰作等腰直角△BCA和等腰直角△DCE,连接BD和AE.
![]()
(1)请判断线段BD和线段AE的数量关系,并说明理由;
(2)如图2,若B,C,E三点不共线,(1)中的结论还成立吗?请说明理由.
【答案】(1)BD=AE,理由见解析;(2)成立,理由见解析
【解析】
(1)依据等腰直角三角形的性质可得到BC=AC,DC=CE,∠BCD=∠ACE=90°,然后依据SAS证明△BCD≌△ACE,接下来,依据全等三角形的性质可得到BD=AE;
(2)依据等腰直角三角形的性质可得到BC=AC,DC=CE,∠BCD=∠ACE=90°,然后利用等式的性质证明∠BCD=∠ACE,然后依据SAS证明△BCD≌△ACE,接下来,依据全等三角形的性质可得到BD=AE.
解:(1)∵△BCA和△DCE均为等腰直角三角形,
∴BC=AC,DC=CE,∠BCD=∠ACE=90°.
在△BCD和△ACE中
![]()
∴△BCD≌△ACE.
∴BD=AE.
(2)成立.
∵△BCA和△DCE均为等腰直角三角形,
∴BC=AC,DC=CE,∠BCD=∠ACE=90°.
∴∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE.
在△BCD和△ACE中,
![]()
∴△BCD≌△ACE.
∴BD=AE.
【题目】某公司根据市场计划调整投资策略,对
,
两种产品进行市场调查,收集数据如表:
项目 产品 | 年固定成本 (单位:万元) | 每件成本 (单位:万元) | 每件产品销售价 (万元) | 每年最多可生产的件数 |
|
|
|
|
|
|
|
|
|
|
其中
是待定常数,其值是由生产
的材料的市场价格决定的,变化范围是
,销售
产品时需缴纳
万元的关税,其中
为生产产品的件数,假定所有产品都能在当年售出,设生产
,
两种产品的年利润分别为
、
(万元),写出
、
与
之间的函数关系式,注明其自变量
的取值范围.