ÌâÄ¿ÄÚÈÝ
2£®£¨1£©½â²»µÈʽ$\frac{1}{2}$x-1¡Ü$\frac{2}{3}$x-$\frac{1}{2}$£¬²¢°ÑËüµÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{x+1£¾0}\\{x¡Ü\frac{x-2}{3}+2}\end{array}\right.$
£¨3£©ÒÑÖªx=2ÊǹØÓÚxµÄ²»µÈʽ3-$\frac{ax}{2}$£¾3xµÄÒ»¸ö½â£¬ÇóaµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¸ù¾Ý½âÒ»ÔªÒ»´Î²»µÈʽ»ù±¾²½Ö裺ȥ·Öĸ¡¢È¥À¨ºÅ¡¢ÒÆÏî¡¢ºÏ²¢Í¬ÀàÏϵÊý»¯Îª1¿ÉµÃ£»
£¨2£©·Ö±ðÇó³öÿһ¸ö²»µÈʽµÄ½â¼¯£¬¸ù¾Ý¿Ú¾÷£ºÍ¬´óÈ¡´ó¡¢Í¬Ð¡È¡Ð¡¡¢´óСС´óÖмäÕÒ¡¢´ó´óССÎÞ½âÁËÈ·¶¨²»µÈʽ×éµÄ½â¼¯£»
£¨3£©½«x=2´úÈë²»µÈʽ¿ÉµÃ¹ØÓÚaµÄ²»µÈʽ£¬½âÖ®¿ÉµÃ£®
½â´ð ½â£º£¨1£©È¥·Öĸ£¬µÃ£º3x-6¡Ü4x-3£¬
ÒÆÏµÃ£º3x-4x¡Ü-3+6£¬
ºÏ²¢Í¬ÀàÏµÃ£º-x¡Ü3£¬
ϵÊý»¯Îª1£¬µÃ£ºx¡Ý-3£¬
±íʾÔÚÊýÖáÉÏÈçÏ£º![]()
£¨2£©½â²»µÈʽx+1£¾0£¬µÃ£ºx£¾-1£¬
½â²»µÈʽx¡Ü$\frac{x-2}{3}$+2£¬µÃ£ºx¡Ü2£¬
¡à²»µÈʽ×éµÄ½â¼¯Îª-1£¼x¡Ü2£»
£¨3£©¡ßx=2ÊǹØÓÚxµÄ²»µÈʽ3-$\frac{ax}{2}$£¾3xµÄÒ»¸ö½â£¬
¡à3-a£¾6£¬
½âµÃ£ºa£¼-3£®
µãÆÀ ±¾Ì⿼²éµÄÊǽâÒ»ÔªÒ»´Î²»µÈʽ×éºÍ²»µÈʽ½âµÃ¶¨Ò壬ÕýÈ·Çó³öÿһ¸ö²»µÈʽ½â¼¯ÊÇ»ù´¡£¬ÊìÖª¡°Í¬´óÈ¡´ó£»Í¬Ð¡È¡Ð¡£»´óСС´óÖмäÕÒ£»´ó´óССÕÒ²»µ½¡±µÄÔÔòÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿