题目内容

19.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③$\frac{AE}{AB}=\frac{DE}{BC}$,④$\frac{AD}{AC}=\frac{AE}{AB}$,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有(  )
A.①②④B.②④⑤C.①②③④D.①②③⑤

分析 由两角相等的两个三角形相似得出①②正确,由两边成比例且夹角相等的两个三角形相似得出④正确;即可得出结果.

解答 解:∵∠A=∠A,∠AED=∠B,
∴△ADE∽△ACB,①正确;
∵∠A=∠A,∠ADE=∠C,
∴△ADE∽△ACB,②正确;
∵∠A=∠A,$\frac{AD}{AC}=\frac{AE}{AB}$,
∴△ADE∽△ACB,④正确;
由$\frac{AE}{AB}=\frac{DE}{BC}$,或AC2=AD•AE不能证明△ADE与△ACB相似.
故选:A.

点评 本题考查了相似三角形的判定定理:
(1)两角对应相等的两个三角形相似;
(2)两边对应成比例且夹角相等的两个三角形相似;
(3)三边对应成比例的两个三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网