ÌâÄ¿ÄÚÈÝ
4£®ÔĶÁÏÂÁвÄÁÏ£ºÎÊÌ⣺ÒÑÖª·½³Ìx2+x-1=0£¬ÇóÒ»¸öÒ»Ôª¶þ´Î·½³Ì£¬Ê¹ËüµÄ¸ù·Ö±ðÊÇÒÑÖª·½³Ì¸ùµÄ2±¶£®
½â£ºÉèËùÇ󷽳̵ĸùΪy£¬Ôòy=2x£¬ËùÒÔx=$\frac{y}{2}$£¬°Ñx=$\frac{y}{2}$£¬´úÈëÒÑÖª·½³Ì£¬µÃ£¨$\frac{y}{2}$£©2+$\frac{y}{2}$-1=0£®
»¯¼ò£¬µÃy2+2y-4=0£¬
¹ÊËùÇó·½³ÌΪy2+2y-4=0
ÕâÖÖÀûÓ÷½³Ì¸ùµÄ´ú»»Çóз½³ÌµÄ·½·¨£¬ÎÒÃdzÆÎª¡°»»¸ù·¨¡±£®
ÇëÓÃÔĶÁ²ÄÁÏÌṩµÄ¡°»»¸ù·¨¡±Çóз½³Ì£¨ÒªÇ󣺰ÑËùÇ󷽳̻¯ÎªÒ»°ãÐÎʽ£©£º
£¨1£©ÒÑÖª·½³Ìx2+2x-1=0£¬ÇóÒ»¸öÒ»Ôª¶þ´Î·½³Ì£¬Ê¹ËüµÄ¸ù·Ö±ðÊÇÒÑÖª·½³Ì¸ùµÄÏà·´Êý£¬ÔòËùÇó·½³ÌΪy2-2y-1=0£»
£¨2£©ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ö²»µÈÓÚÁãµÄʵÊý¸ù£¬ÇóÒ»¸öÒ»Ôª¶þ´Î·½³Ì£¬Ê¹ËüµÄ¸ù·Ö±ðÊÇÒÑÖª·½³Ì¸ùµÄµ¹Êý£®
·ÖÎö £¨1£©ÉèËùÇ󷽳̵ĸùΪy£¬Ôòy=-x£¬ËùÒÔx=-y£¬´úÈëÔ·½³Ì¼´¿ÉµÃ£»
£¨2£©ÉèËùÇ󷽳̵ĸùΪy£¬Ôòy=$\frac{1}{x}$£¨x¡Ù0£©£¬ÓÚÊÇx=$\frac{1}{y}$£¨y¡Ù0£©£¬´úÈë·½³Ìax2+bx+c=0ÕûÀí¼´¿ÉµÃ£®
½â´ð ½â£º£¨1£©ÉèËùÇ󷽳̵ĸùΪy£¬Ôòy=-x£¬ËùÒÔx=-y£¬
°Ñx=-y´úÈë·½³Ìx2+2x-1=0£¬µÃ£ºy2-2y-1=0£¬
¹Ê´ð°¸Îª£ºy2-2y-1=0£»
£¨2£©ÉèËùÇ󷽳̵ĸùΪy£¬Ôòy=$\frac{1}{x}$£¨x¡Ù0£©£¬ÓÚÊÇx=$\frac{1}{y}$£¨y¡Ù0£©£¬
°Ñx=$\frac{1}{y}$´úÈë·½³Ìax2+bx+c=0£¬µÃa £¨$\frac{1}{y}$£©2+b£¨$\frac{1}{y}$£©+c=0£¬
È¥·Öĸ£¬µÃ a+by+cy2=0£¬
Èôc=0£¬ÓÐax2+bx=0£¬
ÓÚÊÇ£¬·½³Ìax2+bx+c=0ÓÐÒ»¸ö¸ùΪ0£¬²»ºÏÌâÒ⣬
¡àc¡Ù0£¬
¹ÊËùÇó·½³ÌΪa+by+cy2=0 £¨ c¡Ù0£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÒ»Ôª¶þ´Î·½³ÌµÄ½â£¬½âÌâµÄ¹Ø¼üÊÇÀí½â·½³ÌµÄ½âµÄ¶¨ÒåºÍ½âÌâµÄ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÏÂÁйØÓÚ·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$µÄ˵·¨ÖУ¬²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¸Ã·´±ÈÀýº¯ÊýµÄͼÏóÓë×ø±êÖáÎÞ½»µã | |
| B£® | µ±k£¾0ʱ£¬¸Ã·´±ÈÀýº¯ÊýµÄͼÏóÔÚµÚÒ»¡¢ÈýÏóÏÞ | |
| C£® | Èç¹û¸Ã·´±ÈÀýº¯ÊýµÄͼÏó¹ýµã£¨1£¬3£©£¬ÄÇôҲһ¶¨¹ýµã£¨-1£¬-3£© | |
| D£® | µ±yËæxµÄÔö´ó¶ø¼õСʱ£¬k£¾1 |
13£®ÏÂÁÐËÄ×éÏß¶ÎÖУ¬Äܹ¹³ÉÖ±½ÇÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
| A£® | 9£¬12£¬13 | B£® | $\frac{1}{3}$£¬$\frac{1}{4}$£¬$\frac{1}{5}$ | C£® | 32£¬42£¬52 | D£® | 1£¬$\sqrt{2}$£¬$\sqrt{3}$ |