题目内容

8.如图,在四边形ABCD中,∠B=90°,DE∥AB,交BC于E,交AC于F,DE=BC,∠CDE=∠ACB=30°.
(1)求证:△FCD是等腰三角形;
(2)若AB=3.5cm,求CD的长.

分析 (1)首先根据平行线的性质得出∠DEC=∠B=90°,然后在△DCE中根据三角形内角和定理得出∠DCE的度数,从而得出∠DCF的度数,在△CDF中根据等角对等边证明出△FCD是等腰三角形;
(2)先证明△ACB≌△CDE,得出AC=CD,再根据含30°角的直角三角形的性质求解即可.

解答 (1)证明:∵DE∥AB,∠B=90°,
∴∠DEC=90°,
∴∠DCE=90°-∠CDE=60°,
∴∠DCF=∠DCE-∠ACB=30°,
∴∠CDE=∠DCF,
∴DF=CF,
∴△FCD是等腰三角形;

(2)解:在△ACB和△CDE中,
$\left\{\begin{array}{l}{∠B=∠DEC=90°}\\{BC=DE}\\{∠ACB=∠CDE}\end{array}\right.$,
∴△ACB≌△CDE,
∴AC=CD,
在Rt△ABC 中,∠B=90°,∠ACB=30°,AB=3.5,
∴AC=2AB=7,
∴CD=7.

点评 本题考查了全等三角形的判定与性质,等腰三角形的判定与性质和含30°角的直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网