题目内容

已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=( )

A. B. C. 6 D.

B 【解析】【解析】 如图:等腰Rt△DEF中,DE=DF=,过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°,则EM=DM=1,故cos30°=,解得:PE=PF==,则PM=,故DP=1﹣,则PD+PE+PF=2×+1﹣=.故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网