ÌâÄ¿ÄÚÈÝ
18£®Èçͼ¢Ù£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬¡ÏB=30¡ã£¬AC=1£¬DΪABµÄÖе㣬EFΪ¡÷ACDµÄÖÐλÏߣ¬ËıßÐÎEFGHΪ¡÷ACDµÄÄÚ½Ó¾ØÐΣ¨¾ØÐεÄËĸö¶¥µã¾ùÔÚ¡÷ACDµÄ±ßÉÏ£©£®£¨1£©¼ÆËã¾ØÐÎEFGHµÄÃæ»ý£»
£¨2£©½«¾ØÐÎEFGHÑØABÏòÓÒÆ½ÒÆ£¬FÂäÔÚBCÉÏÊ±Í£Ö¹ÒÆ¶¯£®ÔÚÆ½Òƹý³ÌÖУ¬µ±¾ØÐÎÓë¡÷CBDÖØµþ²¿·ÖµÄÃæ»ýΪ$\frac{{\sqrt{3}}}{16}$ʱ£¬Çó¾ØÐÎÆ½ÒƵľàÀ룻
£¨3£©Èçͼ¢Û£¬½«£¨2£©ÖоØÐÎÆ½ÒÆÍ£Ö¹Ê±ËùµÃµÄ¾ØÐμÇΪ¾ØÐÎE1F1G1H1£¬½«¾ØÐÎE1F1G1H1ÈÆG1µã°´Ë³Ê±Õë·½ÏòÐýת£¬µ±H1ÂäÔÚCDÉÏʱֹͣת¶¯£¬ÐýתºóµÄ¾ØÐμÇΪ¾ØÐÎE2F2G1H2£¬ÉèÐýת½ÇΪ¦Á£¬Çócos¦ÁµÄÖµ£®
·ÖÎö £¨1£©¸ù¾ÝÒÑÖª£¬ÓÉÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¿ÉÖªAB=2£¬´Ó¶øÇóµÃAD£¬CD£¬ÀûÓÃÖÐλÏßµÄÐÔÖʿɵÃEF£¬DF£¬ÀûÓÃÈý½Çº¯Êý¿ÉµÃGF£¬ÓɾØÐεÄÃæ»ý¹«Ê½¿ÉµÃ½á¹û£»
£¨2£©Ê×ÏÈÀûÓ÷ÖÀàÌÖÂÛµÄ˼Ï룬·ÖÎöµ±¾ØÐÎÓë¡÷CBDÖØµþ²¿·ÖΪÈý½ÇÐÎʱ£¨$0£¼x¡Ü\frac{1}{4}$£©£¬ÀûÓÃÈý½Çº¯ÊýºÍÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉµÃ½á¹û£»µ±¾ØÐÎÓë¡÷CBDÖØµþ²¿·ÖΪֱ½ÇÌÝÐÎʱ£¨$\frac{1}{4}£¼x¡Ü\frac{1}{2}$£©£¬Áгö·½³Ì½âµÃx£»
£¨3£©×÷H2Q¡ÍABÓÚQ£¬ÉèDQ=m£¬Ôò${H_2}Q=\sqrt{3}m$£¬ÓÖ$D{G_1}=\frac{1}{4}$£¬${H_2}{G_1}=\frac{1}{2}$£¬ÀûÓù´¹É¶¨Àí¿ÉµÃm£¬ÔÚRt¡÷QH2G1ÖУ¬ÀûÓÃÈý½Çº¯Êý½âµÃcos¦Á£®
½â´ð ½â£º£¨1£©Èçͼ¢Ù£¬ÔÚ¡÷ABCÖУ¬
¡ß¡ÏACB=90¡ã£¬¡ÏB=30¡ã£¬AC=1£¬![]()
¡àAB=2£¬
ÓÖ¡ßDÊÇABµÄÖе㣬
¡àAD=1£¬$CD=\frac{1}{2}AB=1$£¬
ÓÖ¡ßEFÊÇ¡÷ACDµÄÖÐλÏߣ¬
¡à$EF=DF=\frac{1}{2}$£¬
ÔÚ¡÷ACDÖУ¬AD=CD£¬¡ÏA=60¡ã£¬
¡à¡ÏADC=60¡ã£¬
ÔÚ¡÷FGDÖУ¬GF=DF•sin60¡ã=$\frac{{\sqrt{3}}}{4}$£¬
¡à¾ØÐÎEFGHµÄÃæ»ý$S=EF•GF=\frac{1}{2}¡Á\frac{{\sqrt{3}}}{4}=\frac{{\sqrt{3}}}{8}$£»
£¨2£©Èçͼ¢Ú£¬Éè¾ØÐÎÒÆ¶¯µÄ¾àÀëΪx£¬Ôò$0£¼x¡Ü\frac{1}{2}$£¬
µ±¾ØÐÎÓë¡÷CBDÖØµþ²¿·ÖΪÈý½ÇÐÎʱ£¬![]()
Ôò$0£¼x¡Ü\frac{1}{4}$£¬$S=\frac{1}{2}x•\sqrt{3}x=\frac{{\sqrt{3}}}{16}$£¬
¡à$x=\frac{{\sqrt{2}}}{4}£¾\frac{1}{4}$£®£¨ÉáÈ¥£©£¬
µ±¾ØÐÎÓë¡÷CBDÖØµþ²¿·ÖΪֱ½ÇÌÝÐÎʱ£¬Ôò$\frac{1}{4}£¼x¡Ü\frac{1}{2}$£¬
ÖØµþ²¿·ÖµÄÃæ»ýS=$\frac{{\sqrt{3}}}{4}x-\frac{1}{2}¡Á\frac{1}{4}¡Á\frac{{\sqrt{3}}}{4}=\frac{{\sqrt{3}}}{16}$£¬
¡à$x=\frac{3}{8}$£¬
¼´¾ØÐÎÒÆ¶¯µÄ¾àÀëΪ$\frac{3}{8}$ʱ£¬¾ØÐÎÓë¡÷CBDÖØµþ²¿·ÖµÄÃæ»ýÊÇ$\frac{{\sqrt{3}}}{16}$£»
£¨3£©Èçͼ¢Û£¬×÷H2Q¡ÍABÓÚQ£¬![]()
ÉèDQ=m£¬Ôò${H_2}Q=\sqrt{3}m$£¬ÓÖ$D{G_1}=\frac{1}{4}$£¬${H_2}{G_1}=\frac{1}{2}$£®
ÔÚRt¡÷H2QG1ÖУ¬${£¨\sqrt{3}m£©^2}+{£¨m+\frac{1}{4}£©^2}={£¨\frac{1}{2}£©^2}$£¬
½âÖ®µÃ$m=\frac{{-1¡À\sqrt{13}}}{16}$£¨¸ºµÄÉáÈ¥£©£®
¡à$cos¦Á=\frac{{Q{G_1}}}{{{H_2}{G_1}}}=\frac{{\frac{{-1+\sqrt{13}}}{16}+\frac{1}{4}}}{{\frac{1}{2}}}=\frac{{3+\sqrt{13}}}{8}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬ÖÐλÏßµÄÐÔÖʺÍÈý½Çº¯Êý¶¨ÒåµÈ£¬ÀûÓ÷ÖÀàÌÖÂÛµÄ˼Ï룬¹¹½¨Ö±½ÇÈý½ÇÐÎÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
| ¼×ÖÖÌǹû | ÒÒÖÖÌǹû | ±ûÖÖÌǹû | |
| µ¥¼Û£¨Ôª/ǧ¿Ë£© | 15 | 25 | 30 |
| ǧ¿ËÊý | 40 | 40 | 20 |
£¨2£©ÎªÁËʹʲ½õÌǵĵ¥¼Ûÿǧ¿ËÖÁÉÙ½µµÍ2Ôª£¬É̼Ҽƻ®ÔÚʲ½õÌÇÖмÓÈë¼×¡¢±ûÁ½ÖÖÌǹû¹²100ǧ¿Ë£¬ÎÊÆäÖÐ×î¶à¿É¼ÓÈë±ûÖÖÌǹû¶àÉÙǧ¿Ë£¿
| A£® | 360¡ã | B£® | 540¡ã | C£® | 720¡ã | D£® | 900¡ã |
| A£® | ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù | B£® | ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù | ||
| C£® | Ö»ÓÐÒ»¸öʵÊý¸ù | D£® | ûÓÐʵÊý¸ù |
| A£® | 2$\sqrt{2}$-2 | B£® | $\sqrt{2}$ | C£® | 1 | D£® | 2-$\sqrt{2}$ |