题目内容

如图,抛物线y=ax2-2ax+c的图象与x轴交于A、B(3,0),与y轴交于C(0,-
3
2

(1)求二次函数解析式;
(2)P为第二象限抛物线上一点,且∠PBA=∠OCB,点E在线段CB上,过E作x轴的垂线交PB于F,当△AEF面积最大时,求点E坐标;
(3)设直线l:y=kx+b交y轴于M,交抛物线于N,若A、M、N、B为顶点的四边形为平行四边形,求直线l解析式.
考点:二次函数综合题
专题:代数几何综合题,压轴题
分析:(1)把点B、C的坐标代入抛物线解析式,利用待定系数法求函数解析式解答;
(2)设PB与y轴相交于点D,根据点B、C的坐标求出OC、OB的长度,然后利用相似三角形对应边成比例求出OD的长度,从而得到点D的坐标,再利用待定系数法求直线解析式求出直线PB的解析式与直线BC的解析式,设点E的横坐标为x,根据两直线的解析式表示出E、F的坐标,再根据抛物线解析式求出点A的坐标,然后表示出EF的长度与点A到EF的距离,然后根据三角形的面积公式列式整理,再根据二次函数的最值问题解答得到x的值,便不难求出点E的坐标;
(3)先根据AB的坐标求出AB的长度,再分①AB是平行四边形的边时,直线l与x轴平行,根据平行四边形对边相等求出MN的长度,然后分点N在第一象限与第二象限得到点N的横坐标,再代入抛物线解析式计算求出纵坐标,从而得解;②AB是平行四边形的对角线时,根据平行四边形的对角线互相平分求出平行四边形的中心坐标是(1,0),然后求出点N的横坐标是2,代入抛物线解析式求出点N的纵坐标,再利用待定系数法求直线解析式计算即可得解.
解答:解:(1)∵抛物线y=ax2-2ax+c的图象经过B(3,0),C(0,-
3
2
),
9a-6a+c=0
c=-
3
2

解得
a=
1
2
c=-
3
2

所以,抛物线解析式为y=
1
2
x2-x-
3
2


(2)如图,设直线PB与y轴相交于点D,
∵B(3,0),C(0,-
3
2
),
∴OC=
3
2
,OB=3,
∵∠PBA=∠OCB,∠BOC=∠BOD=90°,
∴△BOC∽△DOB,
OD
OB
=
OB
OC

OD
3
=
3
3
2

解得OD=6,
∴点D的坐标为(0,6),
设直线PB的解析式为y=ex+f,直线BC的解析式为y=mx+n,
3e+f=0
f=6
3m+n=0
n=-
3
2

解得
e=-2
f=6
m=
1
2
n=-
3
2

所以,直线PB的解析式为y=-2x+6,直线BC的解析式为y=
1
2
x-
3
2

令y=0,则
1
2
x2-x-
3
2
=0,
解得x1=3,x2=-1,
所以,点A的坐标为(-1,0),
设点E的横坐标为x,则点E(x,
1
2
x-
3
2
),F(x,-2x+6),
EF=-2x+6-
1
2
x+
3
2
=-
5
2
x+
15
2

点A到EF的距离为x-(-1)=x+1,
S△AEF=
1
2
×(-
5
2
x+
15
2
)×(x+1),
=-
5
4
(x-3)(x+1),
=-
5
4
(x2-2x-3),
=-
5
4
(x-1)2+5,
所以,当x=1时,△AEF面积最大,
此时
1
2
×1-
3
2
=-1,
所以,点E的坐标为(1,-1);

(3)∵A(-1,0),B(3,0),
∴AB=3-(-1)=3+1=4,
①AB是平行四边形的边时,直线l与x轴平行,
此时k=0,MN=AB=4,
所以,点N的横坐标为4或-4,
当点N的横坐标为4时,y=
1
2
×42-4-
3
2
=
5
2

此时,直线l的解析式为y=
5
2

当点N的横坐标为-4时,y=
1
2
×(-4)2-(-4)-
3
2
=
21
2

此时,直线l的解析式为y=
21
2

②AB是平行四边形的对角线时,根据平行四边形的对角线互相平分,
∵A(-1,0),B(3,0),
∴平行四边形的中心坐标为(1,0),
∵点M在y轴上,
∴点N的横坐标为2,
此时,y=
1
2
×22-2-
3
2
=-
3
2

∴点N的坐标为(2,-
3
2
),
k+b=0
2k+b=-
3
2

解得
k=-
3
2
b=
3
2

所以,直线l的解析式为y=-
3
2
x+
3
2

综上所述,直线l的解析式为:y=
5
2
或y=
21
2
或y=-
3
2
x+
3
2
点评:本题是对二次函数的综合考查,主要利用了待定系数法求函数解析式,相似三角形对应边成比例,三角形的面积,二次函数的最值问题,平行四边形的对边平行且相等,对角线互相平分的性质,(3)要注意AB为平行四边形的边时,直线l与x轴平行的情况的讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网