题目内容

17.如图所示,有一个圆柱,它的高为9厘米,底面周长为24厘米,在圆柱下底面的A点有一只蚂蚁要沿侧面到上底面B点取食物,问它爬行的最短路程是多少厘米?

分析 根据题意得出蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB的长,求出AC,BC,根据勾股定理求出AB即可.

解答 解:根据题意得出:蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB的长,
由题意得:AC=$\frac{1}{2}$×24=12(cm),BC=9cm,
由勾股定理得:AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=15(cm),
答:它爬行的最短路程是15厘米.

点评 本题主要考查对勾股定理,平面展开-最短路径问题等知识点的理解和掌握,理解题意知道蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB的长是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网