题目内容

7.若x=$\frac{1+\sqrt{17}}{2}$,则$\frac{{x}^{2}-x+8}{{x}^{4}-{2x}^{3}{+x}^{2}-4}$的值等于(  )
A.1B.$\sqrt{2}$C.2D.-1

分析 根据x=$\frac{1+\sqrt{17}}{2}$,得出x2-x=4,再把$\frac{{x}^{2}-x+8}{{x}^{4}-{2x}^{3}{+x}^{2}-4}$变形,把整体x2-x=4代入即可得出答案.

解答 解:∵x=$\frac{1+\sqrt{17}}{2}$,
∴2x-1=$\sqrt{17}$,
∴(2x-1)2=17,
∴4x2-4x=16,
∴x2-x=4,
∴式=$\frac{4+8}{({x}^{4}-{x}^{3})-({x}^{3}-{x}^{2})-4}$
=$\frac{12}{{x}^{2}({x}^{2}-x)-x({x}^{2}-x)-4}$
=$\frac{12}{4{x}^{2}-4x-4}$
=$\frac{3}{4-1}$
=1,
故选A.

点评 本题考查了分式的化简求值,根据x=$\frac{1+\sqrt{17}}{2}$,得出x2-x=4,再整体代入是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网