题目内容
14.| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据抛物线与x轴的交点个数对①进行判断;由抛物线开口方向得a<0,由抛物线的对称轴在y轴的右侧得b>0,由抛物线与y轴的交点在x轴上方得c>0,则可对②③进行判断;由ax2+bx+c-m=0没有实数根得到抛物线y=ax2+bx+c与直线y=m没有公共点,加上二次函数的最大值为2,则m>2,于是可对④进行判断.
解答 解:∵抛物线与x轴有2个交点,
∴b2-4ac>0,所以①正确;
∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以②正确;
∴a-b<0,所以③错误;
∵ax2+bx+c-m=0没有实数根,
即抛物线y=ax2+bx+c与直线y=m没有公共点,
而二次函数的最大值为2,
∴m>2,所以④正确.
故选C.
点评 本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关题目
2.
如图,抛物线y=ax2+bx+c经过点(-1,0),与x轴的另一个交点在点(2,0)和点(3,0)之间,与y轴相交于正半轴:①b=a+c;②a+b>0;③2a+b>0;④$\frac{{b}^{2}-4ac}{4a}$+a+b+c<0中,正确结论的个数是( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
3.
已知y=ax2+bx+c的图象如图所示,则y=ax-bc的图象一定不经过( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
4.将二次函数y=-2x2的图象向左平移1个单位,平移后二次函数的解析式为( )
| A. | y=-2x2+1 | B. | y=-2x2-1 | C. | y=-2(x+1)2 | D. | y=-2(x-1)2 |