题目内容

8.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下得到△ADH,则下列选项正确的个数为(  )
①AE垂直平分HB;②∠HBN=15°;③DH=DC;④△ADH是一个等边三角形.
A.1个B.2个C.3个D.4个

分析 ①由翻折的性质可知;点H与点B关于AE对称,故此AE⊥BH,④由翻折的性质AH=AB,MN垂直平分AD,于是得到DH=AH=AB=AD,故此△ADH为等边三角形,③由DH=AD可知DH=DC,②由△ADH为等边三角形可知∠HAB=30°,在△ABH中可求得∠ABH=75°,故此可求得∠HBN=15°.

解答 解:由翻折的性质可知:AE垂直平分HB,MN垂直平分AD.
故①正确.
∵MN垂直平分AD,
∴DH=AH.
由翻折的性质可知:AH=AB.
∴AH=AD=DH.
∴△ADH是一个等边三角形.
故④正确.
∵HD=AD,
∴HD=DC.
故③正确
∵△ADH是一个等边三角形,
∴∠DAH=60°.
∴∠HAB=30°.
∵AB=AH,
∴∠ABH=$\frac{1}{2}$×(180°-30°)=75°.
∴∠HBN=15°.
故②正确.
故选:D.

点评 本题主要考查的是翻折的性质、线段垂直平分线的性质、等边三角形的性质和判定、等腰三角形的性质,证得三角形ADH是一个等边三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网