题目内容

15.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交$\widehat{AC}$于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.

分析 (1)欲证明AC∥DE,只要证明AC⊥OD,ED⊥OD即可.
(2)作DM⊥OA于M,连接CD,CO,AD,首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.

解答 (1)证明:∵ED与⊙O相切于D,
∴OD⊥DE,
∵F为弦AC中点,
∴OD⊥AC,
∴AC∥DE.
(2)解:作DM⊥OA于M,连接CD,CO,AD.
首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.(方法二:证明△ADE的面积等于四边形ACDE的面积的一半)
∵AC∥DE,AE=AO,
∴OF=DF,
∵AF⊥DO,
∴AD=AO,
∴AD=AO=OD,
∴△ADO是等边三角形,同理△CDO也是等边三角形,
∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,
∴AO∥CD,又AE=CD,
∴四边形ACDE是平行四边形,易知DM=$\frac{\sqrt{3}}{2}$a,
∴平行四边形ACDE面积=$\frac{\sqrt{3}}{2}$a2

点评 本题考查切线的性质、平行四边形的性质、垂径定理等知识,解题的关键是学会添加常用辅助线,利用特殊三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网