题目内容

如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.
考点:三角形内角和定理,三角形的外角性质
专题:
分析:根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理列出等式整理即可得解.
解答:解:∵BP平分∠ABC,DP平分∠ADC,
∴∠ADP=∠PDF,∠CBP=∠PBA,
∵∠A+∠ADP=∠P+∠ABP,
∠C+∠CBP=∠P+∠PDF,
∴∠A+∠C=2∠P,
∵∠A=40°,∠C=36°,
∴∠P=
1
2
(40°+36°)=38°.
点评:本题考查了三角形的内角和定理,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网