题目内容

7.已知函数y=(k+2)x2+2x-k的图象与坐标轴有两个交点,则k的值是-1或-2或0.

分析 当k+2=0时,为一次函数,则与x轴和y轴各有一个交点满足条件;当k+2≠0时,则根据对应一元二次方程的判别式为可求得k的值;当二次函数过原点时也满足条件,可求得k的值.

解答 解:
当k+2=0时,即k=-2,函数y=x+2,与x轴和y轴各有一个交点,满足条件;
当k+2≠0时,由函数与y轴交于点(0,-k),-k=0,k=0,
则与x轴只能有一个交点,
∴△=22+4k(k+2)=0,解得k=-1;
综上可知k的值为-1或-2或0,
故答案为:-1或-2或0.

点评 本题主要考查二次函数与坐标轴的交点,掌握二次函数的交点个数与对应一元二次方程根的个数的关系是解题的关键,注意分类讨论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网