题目内容
1.| A. | 115° | B. | 110° | C. | 105° | D. | 130° |
分析 求出∠ABC+∠ACB的度数,根据角平分线的定义得出∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出即可.
解答 解:∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,
∴∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB,
∴∠OBC+∠OCB=$\frac{1}{2}$(∠ABC+∠ACB)=65°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°,
故选A.
点评 本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
练习册系列答案
相关题目
11.在下列各式中,不是代数式的是( )
| A. | 7 | B. | 3>2 | C. | $\frac{x}{2}$ | D. | $\frac{2}{3}$x2+y2 |