题目内容
如图,平行四边形ABCD周长是28cm,△ABC的周长是22cm,则AC长( )
A. 14cm B. 12cm C. 10cm D. 8cm
如图,抛物线y=x2+bx+c过点A(0,﹣6)、B(﹣2,0),与x轴的另一交点为点C.
(1)求此抛物线的解析式;
(2)将直线AC向下平移m个单位,使平移后的直线与抛物线有且只有一个公共点M,求m的值及点M的坐标;
(3)抛物线上是否存在点P,使△PAC为直角三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由.
菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是( )
A. B. C. D.
如图?ABCD中,AB=5,AD=7,BC边上的高AE=2,则CD边上的高AF=_____.
△ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的( )
A. 如果∠C﹣∠B=∠A,则△ABC是直角三角形,且∠C=90°
B. 如果c2=a2﹣b2,则△ABC是直角三角形,且∠C=90°
C. 如果(c+a)(c﹣a)=b2,则△ABC是直角三角形,且∠C=90°
D. 如果∠A:∠B:∠C=3:2:5,则△ABC是直角三角形,且∠C=90°
已知在平面直角坐标系xOy(如图)中,已知抛物线y=+bx+c点经过A(1,0)、B(0,2).
(1)求该抛物线的表达式;
(2)设该抛物线的对称轴与x轴的交点为C,第四象限内的点D在该抛物线的对称轴上,如果以点A、C、D所组成的三角形与△AOB相似,求点D的坐标;
(3)设点E在该抛物线的对称轴上,它的纵坐标是1,联结AE、BE,求sin∠ABE.
已知⊙O1的半径长为4,⊙O2的半径长为r,圆心距O1O2=6,当⊙O1与⊙O2外切时,r的长为_____.
如图,已知点A(﹣4,8)和点B(2,n)在抛物线y=ax2上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(﹣2,0)和点D(﹣4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.
设实数x,y,z适合9x3=8y3=7z3,,则=__________,
=_____________.