ÌâÄ¿ÄÚÈÝ
8£®£¨1£©Çó¶þ´Îº¯ÊýµÄ±í´ïʽ£»
£¨2£©µãNÊǶþ´Îº¯ÊýͼÏóÉÏÒ»µã£¨µãNÔÚABÉÏ·½£©£¬¹ýN×÷NP¡ÍxÖᣬ´¹×ãΪµãP£¬½»ABÓÚµãM£¬ÇóMNµÄ×î´óÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚµãN£¬Ê¹µÃBMÓëNCÏ໥´¹Ö±Æ½·Ö£¿Èô´æÔÚ£¬Çó³öËùÓÐÂú×ãÌõ¼þµÄNµãµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÁîÒ»´Îº¯Êý¹ØÏµÊ½ÖÐx=0¡¢x=-3£¬Çó³öµãA¡¢BµÄ×ø±ê£¬ÓÉÈýµãµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÉèµãNµÄ×ø±êΪ£¨m£¬-$\frac{5}{4}{m}^{2}$-$\frac{17}{4}$m+1£©£¨-3£¼m£¼0£©£¬ÔòµãMµÄ×ø±êΪ£¨m£¬-$\frac{1}{2}$m+1£©£¬Óú¬mµÄ´úÊýʽ±íʾ³öÀ´MN£¬½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʼ´¿É½â¾ö×îÖµÎÊÌ⣻
£¨3£©¼ÙÉè´æÔÚ£¬ÉèµãNµÄ×ø±êΪ£¨m£¬-$\frac{5}{4}{m}^{2}$-$\frac{17}{4}$m+1£©£¨-3£¼m£¼0£©£¬Á¬½ÓBN¡¢CM£¬µ±ËıßÐÎBCMNΪÁâÐÎʱ£¬BMÓëNCÏ໥´¹Ö±Æ½·Ö£¬¸ù¾ÝBC=MNËã³ömµÄÖµ£¬´Ó¶øµÃ³öµãNµÄ×ø±ê£¬ÔÙÈ¥ÑéÖ¤BNÊÇ·ñµÈÓÚBC£¬Óɴ˼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÁîÒ»´Îº¯Êýy=-$\frac{1}{2}$x+1ÖÐx=0£¬Ôòy=1£¬
¡àµãAµÄ×ø±êΪ£¨0£¬1£©£»
ÁîÒ»´Îº¯Êýy=-$\frac{1}{2}$x+1ÖÐx=-3£¬Ôòy=-$\frac{1}{2}$¡Á£¨-3£©+1=$\frac{5}{2}$£¬
¡àµãBµÄ×ø±êΪ£¨-3£¬$\frac{5}{2}$£©£®
½«µãA£¨0£¬1£©¡¢µãB£¨-3£¬$\frac{5}{2}$£©¡¢µã£¨-1£¬4£©´úÈëµ½y=ax2+bx+cÖУ¬
µÃ£º$\left\{\begin{array}{l}{1=c}\\{\frac{5}{2}=9a-3b+c}\\{4=a-b+c}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=-\frac{5}{4}}\\{b=-\frac{17}{4}}\\{c=1}\end{array}\right.$£®
¡à¶þ´Îº¯ÊýµÄ±í´ïʽΪy=-$\frac{5}{4}{x}^{2}$-$\frac{17}{4}$x+1£®
£¨2£©ÉèµãNµÄ×ø±êΪ£¨m£¬-$\frac{5}{4}{m}^{2}$-$\frac{17}{4}$m+1£©£¨-3£¼m£¼0£©£¬ÔòµãMµÄ×ø±êΪ£¨m£¬-$\frac{1}{2}$m+1£©£¬
¡àMN=-$\frac{5}{4}{m}^{2}$-$\frac{17}{4}$m+1-£¨-$\frac{1}{2}$m+1£©=-$\frac{5}{4}{m}^{2}$-$\frac{15}{4}$m=-$\frac{5}{4}$$£¨m+\frac{3}{2}£©^{2}$+$\frac{45}{16}$£¬
¡àµ±m=-$\frac{3}{2}$ʱ£¬MNÈ¡×î´óÖµ£¬×î´óֵΪ$\frac{45}{16}$£®
£¨3£©¼ÙÉè´æÔÚ£¬ÉèµãNµÄ×ø±êΪ£¨m£¬-$\frac{5}{4}{m}^{2}$-$\frac{17}{4}$m+1£©£¨-3£¼m£¼0£©£¬Á¬½ÓBN¡¢CM£¬ÈçͼËùʾ£®![]()
ÈôÒªBMÓëNCÏ໥´¹Ö±Æ½·Ö£¬Ö»ÐèËıßÐÎBCMNΪÁâÐμ´¿É£®
¡ßµãB×ø±êΪ£¨-3£¬$\frac{5}{2}$£©£¬µãCµÄ×ø±êΪ£¨-3£¬0£©£¬
¡àBC=$\frac{5}{2}$£®
¡ßËıßÐÎBCMNΪÁâÐΣ¬
¡àMN=-$\frac{5}{4}{m}^{2}$-$\frac{15}{4}$m=BC=$\frac{5}{2}$£¬
½âµÃ£ºm1=-2£¬m2=-1£®
µ±m=-2ʱ£¬µãNµÄ×ø±êΪ£¨-2£¬$\frac{9}{2}$£©£¬
¡àBN=$\sqrt{[-2-£¨-3£©]^{2}+£¨\frac{9}{2}-\frac{5}{2}£©^{2}}$=$\sqrt{5}$£¬BC=$\frac{5}{2}$£¬BN¡ÙBC£¬
¹Êm=-2£¨ÉáÈ¥£©£»
µ±m=-1ʱ£¬µãNµÄ×ø±êΪ£¨-1£¬4£©£¬
¡àBN=$\sqrt{[-1-£¨-3£©]^{2}+£¨4-\frac{5}{2}£©^{2}}$=$\frac{5}{2}$£¬BC=$\frac{5}{2}$£¬BN=BC£¬
¡àµãN£¨-1£¬4£©·ûºÏÌâÒ⣮
¹Ê´æÔÚµãN£¬Ê¹µÃBMÓëNCÏ໥´¹Ö±Æ½·Ö£¬µãNµÄ×ø±êΪ£¨-1£¬4£©£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊÒÔ¼°ÁâÐεÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©Çó³öµãA¡¢BµÄ×ø±ê£»£¨2£©ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾ö×îÖµÎÊÌ⣻£¨3£©¸ù¾ÝÁâÐεÄÐÔÖÊÈ·¶¨µãNµÄ×ø±ê£®±¾ÌâÊôÓÚÖеµÌ⣬£¨1£©£¨2£©ÄѶȲ»´ó£»£¨3£©µ±È·¶¨ÏÂÀ´ËıßÐÎBCMNµÄÐÎ×´ºó£¬ÎÊÌâ¾ÍµÃÒÔ½â¾ö£¬½â¾ö¸ÃÀàÐÍÌâĿʱ£¬Ê×ÏÈÒªÏëµ½µÄÊǽ«BMÓëNCµ±³É¶Ô½ÇÏߣ¬¸ù¾Ý¶Ô½ÇÏß»¥Ïഹֱƽ·ÖÄÜÅжϳöËıßÐÎÊÇʲôÐÎ×´£¬ÔÙ¸ù¾Ý¸ÃÐÎ״ͼÐÎµÄÆäËûÐÔÖÊÈ¥½â¾öÎÊÌ⣮
| A£® | 3£¬7£¬8 | B£® | 4£¬5£¬6 | C£® | 6£¬8£¬15 | D£® | 8£¬9£¬15 |
| A£® | Õý±ÈÀýº¯Êý | B£® | ·´±ÈÀýº¯Êý | ||
| C£® | ͼÏó²»¾¹ýÔµãµÄÒ»´Îº¯Êý | D£® | ¶þ´Îº¯Êý |
| A£® | µãA | B£® | µãB | C£® | µãC | D£® | µãD |