题目内容
5.先化简,再求值:$\frac{{x}^{2}+2x+1}{{x}^{2}+x}$÷($\frac{1+{x}^{2}}{x}$-2x),其中x=$\sqrt{2}$+1.分析 根据分式的除法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.
解答 解:$\frac{{x}^{2}+2x+1}{{x}^{2}+x}$÷($\frac{1+{x}^{2}}{x}$-2x)
=$\frac{(x+1)^{2}}{x(x+1)}÷\frac{1+{x}^{2}-2{x}^{2}}{x}$
=$\frac{(x+1)^{2}}{x(x+1)}×\frac{x}{(1+x)(1-x)}$
=$\frac{1}{1-x}$,
当x=$\sqrt{2}$+1,原式=$\frac{1}{1-(\sqrt{2}+1)}=\frac{1}{1-\sqrt{2}-1}=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}$.
点评 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
练习册系列答案
相关题目
20.为了比较市场上甲乙两种电子钟每日走时误差的情况,从两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如表:
(1)计算甲、乙两种电子钟走时误差的平均数;
(2)计算甲、乙两种电子钟走时误差的方差.
| 类型 编号 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
| 甲种电子钟 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
| 乙钟电子钟 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(2)计算甲、乙两种电子钟走时误差的方差.
17.
为了解国家提倡的“阳光体育运动”的实施情况,将某校中的40名学生一周的体育锻炼时间绘制成了如图所示的条形统计图,根据统计图提供的数据,该校40名同学一周参加体育锻炼时间的众数与中位数分别是( )
| A. | 8,8 | B. | 8,9 | C. | 9,8 | D. | 10,9 |
14.下列各数中,最大的数是( )
| A. | -$\frac{1}{2}$ | B. | (-$\frac{1}{2}$)2 | C. | (-$\frac{1}{2}$)3 | D. | (-$\frac{1}{2}$)4 |