题目内容
5.先化简,再求值:($\frac{x+2}{{x}^{2}-2x}$-$\frac{x-1}{{x}^{2}-4x+4}$)÷$\frac{x-4}{x}$,其中x2-4x-1=0.分析 先算括号里面的,再算除法,根据x2-4x-1=0得出x2-4x=1,代入原式进行计算即可.
解答 解:原式=[$\frac{x+2}{x(x-2)}$-$\frac{x-1}{(x-2)^{2}}$]•$\frac{x}{x-4}$
=$\frac{{x}^{2}-4-{x}^{2}+x}{x{(x-2)}^{2}}$•$\frac{x}{x-4}$
=$\frac{x-4}{x{(x-2)}^{2}}$•$\frac{x}{x-4}$
=$\frac{1}{{(x-2)}^{2}}$
=$\frac{1}{{x}^{2}-4x+4}$,
∵x2-4x-1=0,
∴x2-4x=1
∴原式=$\frac{1}{1+4}$=$\frac{1}{5}$.
点评 本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.
练习册系列答案
相关题目
15.下列二次根式中最简根式是( )
| A. | $\sqrt{9}$ | B. | $\sqrt{7}$ | C. | $\sqrt{20}$ | D. | $\sqrt{\frac{1}{3}}$ |