题目内容
8.| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |
分析 根据等腰三角形的判定,运用直角三角形的两个锐角互余和角平分线的性质,证得∠CAD=∠BAD=30°,
CD=ED,AC=AE,即△ABD、△CDE、△ACE、△BCE是等腰三角形
解答 解:∵∠ACB=90°,∠B=30°,
∴∠BAC=60°,
∵AD是角平分线,
∴∠CAD=∠BAD=30°,
∴AD=BD.
∴△ABD是等腰三角形.
∵AD是角平分线,∠ACB=90°,DE⊥AB,
∴CD=ED
∴AC=AE
∴△CDE、△ACE是等腰三角形;
又△CEB也是等腰三角形
显然此图中有4个等腰三角形.
故选B.
点评 本题考查了等腰三角形的判定;要综合运用直角三角形的两个锐角互余和角平分线的性质,找到相等的线段,来判定等腰三角形.
练习册系列答案
相关题目
18.∠A是△ABC的一个内角,并且方程x2-4x•sin$\frac{A}{2}$+1=0的一根是$\sqrt{2}$-1,则∠A是( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |