题目内容

14.解方程组:
(1)$\left\{\begin{array}{l}{x-y=0}\\{2x+y=6}\end{array}\right.$                    
(2)$\left\{\begin{array}{l}{\frac{x+1}{5}=\frac{y-3}{2}}\\{3x+4y=32}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x-y=0①}\\{2x+y=6②}\end{array}\right.$,
①+②得:3x=6,即x=2,
把x=2代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}x=2\\ y=2\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{2x-5y=-17①}\\{3x+4y=32②}\end{array}\right.$,
①×4+②×5得:23x=92,即x=4,
把x=4代入①得:y=5,
则方程组的解为$\left\{\begin{array}{l}x=4\\ y=5\end{array}\right.$.

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网