题目内容

已知:△ABC是边长为3的等边三角形,以BC为底边作一个顶角为120º等腰△BDC.点M、点N分别是AB边与AC边上的点,并且满足∠MDN=60º.

(1)如图1,当点D在△ABC外部时,求证:BM+CN=MN;

(2)在(1)的条件下求△AMN的周长;

(3)当点D在△ABC内部时,其它条件不变,请在图2中补全图形,并直接写出△AMN的周长.

(1)证明见解析;(2)6;(3)3. 【解析】试题分析:(1)延长AB至F,使BF=CN,连接DF,只要证明△BDF≌△CND,△DMN≌△DMF即可解决问题; (2)利用(1)中结论即可解决问题; (3)延长BD交AC于P,CD于Q,令KP=QM,交AC于P,连接DK.通过证明△BDQ≌△CDP,△MDQ≌△PDK,△MDN≌△KDN证得△AMN的周长=(AB+AC)=3. ...
练习册系列答案
相关题目