题目内容

16.命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.
(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:AAS;
(2)请你按照小莉的思路完成命题的证明.

分析 (1)根据AAS即可判断;
(2)过点D作DE⊥AB于点E,过点D作DF⊥AC于点F.首先证明△BDE≌△CDF(AAS),推出BE=CF,DE=DF,再证明Rt△AED≌Rt△AFD,推出AE=AF即可解决问题;

解答 解:(1)△ABD≌△ACD的理由是AAS,
故答案为AAS.

(2)证明:过点D作DE⊥AB于点E,过点D作DF⊥AC于点F.

∵∠BED=∠CFD=90°,∠B=∠C,BD=CD.
∴△BDE≌△CDF(AAS).
∴BE=CF,DE=DF. 
在Rt△AED和Rt△AFD中,∠AED=∠AFD=90°.
∵AD=AD,DE=DF,
∴Rt△AED≌Rt△AFD.
∴AE=AF.
∴AE+BE=AF+CF.
即AB=AC.

点评 本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网