题目内容

8.如图,点O是△ABC的边BC的中点,且点O到△ABC的两边AB,AC所在的直线的距离相等,求证:AB=AC.

分析 求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC来实现.

解答 证明:过点O分别作OE⊥AB于E,OF⊥AC于F,

由题意知,
在Rt△OEB和Rt△OFC中
$\left\{\begin{array}{l}{OB=OC}\\{OE=OF}\end{array}\right.$
∴Rt△OEB≌Rt△OFC(HL),
∴∠ABC=∠ACB,
∴AB=AC.

点评 题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网