题目内容

5.如图,矩形ABCD中,O为BD中点,PQ过点P分别交AD、BC于点P、Q,连接BP和DQ,求证:四边形PBQD是平行四边形.

分析 依据矩形的性质和平行线的性质,通过全等三角形的判定定理判定△POD≌△QOB,所以OP=OQ,则四边形PBQD的对角线互相平分,故四边形PBQD为平行四边形.

解答 证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,
在△POD和△QOB中,
$\left\{\begin{array}{l}{∠PDO=∠QBO}\\{OB=OD}\\{∠POD=∠QOB}\end{array}\right.$,
∴△POD≌△QOB(ASA),
∴OP=OQ;
又∵O为BD的中点,
∴OB=OD,
∴四边形PBQD为平行四边形;

点评 本题考查了行四边形的判定、矩形的性质.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网