题目内容
2.(1)如图1,在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O.求证:OA=OE.(2)如图2,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.求证:∠BAD=∠E.
分析 (1)由在平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,即可求得∠DBE=∠ADB,得出OB=OD,再由∠A=∠C,证明三角形全等,利用全等三角形的性质证明即可;
(2)根据切线的性质,和等角的余角相等证明即可;
解答 (1)证明:平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,
可得∠DBE=∠ADB,∠A=∠C,
∴OB=OD,
在△AOB和△EOD中,
$\left\{\begin{array}{l}{∠A=∠C}\\{∠AOB=∠EOD}\\{0B=OD}\end{array}\right.$,
∴△AOB≌△EOD(AAS),
∴OA=OE.
(2)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,
∴∠ABE=90°,![]()
∴∠BAE+∠E=90°,
∵∠DAE=90°,
∴∠BAD+∠BAE=90°,
∴∠BAD=∠E.
点评 此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
10.已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )
| A. | b2>4ac | |
| B. | 关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1 | |
| C. | ax2+bx+c≥-6 | |
| D. | 若点(-2,m),(-5,n)在抛物线上,则m>n |
7.
如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=$\frac{\sqrt{3}}{x}$(x>0)经过线段DC的中点E,若BD=4,则AG的长为( )
| A. | $\frac{4\sqrt{3}}{3}$ | B. | $\sqrt{3}$+2 | C. | 2$\sqrt{3}$+1 | D. | $\frac{3\sqrt{3}}{2}$+1 |
14.下列计算正确的是( )
| A. | a2+a2=a4 | B. | a6÷a3=a2 | C. | 4x3-3x2=1 | D. | (-2x2y)3=-8x6y3 |