用十个球设计一个游戏,使摸到红球、白球的可能性相同,并且摸到黄球的可能性比摸到红球的可能性小.

红球4个,白球4个,黄球2个. 【解析】试题分析:此题要想使摸到红球、白球的可能性相同,摸到黄球的可能性比摸到红球的可能性小,只要红球、白球个数相同,红球的个数多于黄球的个数即可. 试题解析:由题意知共10个球,即红球个数+白球个数+黄球个数=10 摸到红球、白球的可能性相同 ∴红球个数=白球个数=1,2,3,4 ∴红球个数,白球个数,黄球个数可能是:1,1,8或2,...

如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=

。 【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数. 【解析】 如图, ∵四边形ABCD为矩形, ∴∠B=∠D=∠BAD=90°, ∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′...

将长度为5cm的线段向上平移10cm所得线段长度是(   )

A. 10cm B. 5cm C. 0cm D. 无法确定

B 【解析】平移不改变图形的大小和形状.故线段长度不变,仍为5cm.

已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).

(1)求出b,c的值,并写出此二次函数的解析式;

(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

(1)b="2,c=3," y=﹣x2+2x+3.(2) ﹣1<x<3 【解析】试题分析:(1)把抛物线上的两点代入解析式,解方程组可求b、c的值; (2)令y=0,求抛物线与x轴的两交点坐标,观察图象,求y>0时,x的取值范围. 试题解析:(1)将点(﹣1,0),(0,3)代入y=﹣x2+bx+c中,得 ,解得. ∴y=﹣x2+2x+3. (2)令y=0,解方...

根据下列表格对应值:

x

3

4

5

y=ax2+bx+c

0.5

﹣0.5

﹣1

判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是(  )

A. x<3 B. x>5 C. 3<x<4 D. 4<x<5

C 【解析】试题分析:∵x=3时,y=0.5,即ax2+bx+c>0; x=4时,y=﹣0.5,即ax2+bx+c<0, ∴抛物线与x轴的一个交点在(3,0)和(4,0)之间, ∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3<x<4. 故选C.

如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a.则△BEF的形状如何?

△BEF为正三角形,理由见解析 【解析】试题分析:根据已知条件易证△BDE≌△BCF,即可求得∠FBD+∠DBE=60°,根据一个内角为60°的等腰三角形可以判定为等边三角形,即可得结论. 试题解析: △BEF为正三角形 证明:∵AE+CF=a,AE+ED=a, ∴DE=CF, 在△BDE和△BCF中, ∴△BDE≌△BCF, ∴BE=BF,∠CBF...

每一个多边形都可以按图的方法割成若干个三角形.而每一个三角形的三个内角的和是180°.按图的方法,十二边形的内角和是__________度.

1800 【解析】∵过四边形的一个顶点可画一条对角线,将四边形分成两个三角形, 过五边形的一个顶点可画两条对角线,将五边形分成三个三角形, 过六边形的一个顶点可画三条对角线,将六边形分成四个三角形, ∴过十二边形的一个顶点可画九条对角线,将十二边形分成十个三角形, 而三角形的内角和等于180°, ∴十二边形的内角和是180°×10=1800°. 故答案为:...

如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是______(填序号)

① ③ ② 【解析】①y=?3x²,②y=?x²,③y=?x²中,二次项系数a分别为?3、?、?1, ∵|?3|>|?1|>,∴抛物线②y=?x²的开口最宽,抛物线①y=?3x²的开口最窄。 故答案为:①③②。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网