题目内容

8.如图,D、E分别是△ABC两边的中点,△ADE的面积记为S1,四边形DBCE的面积记为S2,则下列结论正确的是(  )
A.S1=S2B.S2=2S1C.S2=3S1D.S2=4S1

分析 由已知可知DE是△ABC的中位线,那么DE∥BC,再根据平行线分线段成比例定理的推论,可得△ADE∽△ABC,且相似比等于1:2,则面积比等于1:4,从而可求四边形DBCE的面积和△ADE的面积的关系.

解答 解:∵D、E是△ABC两边AB、AC的中点,
∴△ADE∽△ABC,相似比为1:2,
∴S△ADE:S△ABC=1:4,
∴S△DBCE:S△ADE=3:1,
故选C.

点评 本题比较简单,考查的是三角形的中位线定理及相似三角形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网