题目内容
19.解方程组:$\left\{\begin{array}{l}{x+2y=12}\\{{x}^{2}+2{y}^{2}=3xy}\end{array}\right.$.分析 由②得出x2-3xy+2y2=0,即得x-2y=0,x-y=0,则原方程组可化为两个二元一次方程组,求出方程组的解即可.
解答 解:$\left\{\begin{array}{l}{x+2y=12①}\\{{x}^{2}+2{y}^{2}=3xy②}\end{array}\right.$
由②,得x2-3xy+2y2=0,
即得x-2y=0,x-y=0,
则原方程组可化为
$\left\{\begin{array}{l}{x+2y=12}\\{x-2y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x+2y=12}\\{x-y=0}\end{array}\right.$,
解这两个方程组,得$\left\{\begin{array}{l}{{x}_{1}=6}\\{{y}_{1}=3}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=4}\\{{y}_{2}=4}\end{array}\right.$.
点评 本考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.
练习册系列答案
相关题目
10.多项式:①16x2-8x;②(x-1)2-4(x-1)2;③(x+1)4-4(x+1)2+4x2;④-4x2-1+4x分解因式后,结果中含有相同因式的是( )
| A. | ①和② | B. | ③和④ | C. | ①和④ | D. | ②和③ |
7.若x=-3是关于x的一元一次方程2x+m+5=0的解,则m的值为( )
| A. | -1 | B. | 0 | C. | 1 | D. | 11 |