题目内容

19.解方程组:$\left\{\begin{array}{l}{x+2y=12}\\{{x}^{2}+2{y}^{2}=3xy}\end{array}\right.$.

分析 由②得出x2-3xy+2y2=0,即得x-2y=0,x-y=0,则原方程组可化为两个二元一次方程组,求出方程组的解即可.

解答 解:$\left\{\begin{array}{l}{x+2y=12①}\\{{x}^{2}+2{y}^{2}=3xy②}\end{array}\right.$
由②,得x2-3xy+2y2=0,
即得x-2y=0,x-y=0,
则原方程组可化为
$\left\{\begin{array}{l}{x+2y=12}\\{x-2y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x+2y=12}\\{x-y=0}\end{array}\right.$,
解这两个方程组,得$\left\{\begin{array}{l}{{x}_{1}=6}\\{{y}_{1}=3}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=4}\\{{y}_{2}=4}\end{array}\right.$.

点评 本考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网