题目内容
20.解方程组:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}+x+y=18}\\{{x}^{2}+xy+{y}^{2}=19}\end{array}\right.$.分析 两式相减得到xy-x-y=1即x+y=xy-1,代入②式变形得到(xy-1)2-xy=19,解得xy=6或-3 当xy=6时,得到$\left\{\begin{array}{l}{xy=6}\\{x+y=xy-1}\end{array}\right.$,当xy=-3时,得到$\left\{\begin{array}{l}{xy=-3}\\{x+y=xy-1}\end{array}\right.$,再分别解方程组即可求解.
解答 解:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}+x+y=18①}\\{{x}^{2}+xy+{y}^{2}=19②}\end{array}\right.$
②-①得:xy-x-y=1即x+y=xy-1③,
由②得:(x+y)2-xy=19④
把x+y=xy-1代入④得:(xy-1)2-xy=19,
整理得:(xy)2-3xy-18=0,
解得:xy=6或-3,
当xy=6时,则$\left\{\begin{array}{l}{xy=6}\\{x+y=xy-1}\end{array}\right.$
解得$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=3}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=3}\\{{y}_{2}=2}\end{array}\right.$
当xy=-3时,则$\left\{\begin{array}{l}{xy=-3}\\{x+y=xy-1}\end{array}\right.$
解得$\left\{\begin{array}{l}{{x}_{3}=-2-\sqrt{7}}\\{{y}_{3}=-2+\sqrt{7}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{4}=-2+\sqrt{7}}\\{{y}_{4}=-2-\sqrt{7}}\end{array}\right.$.
点评 本题考查了解高次方程组,注意:解方程组的方法有两种:①加减消元法,②代入消元法.
| A. | 当y1<y2时,自变量x的取值范围不能确定 | |
| B. | 当y1<y2时,-1<x<3 | |
| C. | 当y1<y2时,-1≤x≤3 | |
| D. | 当y1<y2时,x<-1或x>3 |
| A. | $\sqrt{a}$ | B. | $\sqrt{-a}$ | C. | $\sqrt{-{a}^{2}}$ | D. | $\sqrt{|a|}$ |