ÌâÄ¿ÄÚÈÝ
8£®£¨1£©Ö±½Óд³öBµãºÍDµãµÄ×ø±êB£¨-1£¬2$\sqrt{2}$£©£»D£¨3£¬2$\sqrt{2}$£©£®
£¨2£©½«Õâ¸ö³¤·½ÐÎÏÈÏòÓÒÆ½ÒÆ1¸öµ¥Î»³¤¶È³¤¶È£¬ÔÙÏòÏÂÆ½ÒÆ$\sqrt{2}$¸öµ¥Î»³¤¶È£¬µÃµ½³¤·½ÐÎA1B1C1D1£¬ÇëÄãд³öÆ½ÒÆºóËĸö¶¥µãµÄ×ø±ê£»
£¨3£©Èç¹ûQµãÒÔÿÃë$\sqrt{2}$¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔÚ³¤·½ÐÎABCDµÄ±ßÉÏ´ÓA³öµ½µ½CµãÍ£Ö¹£¬ÑØ×ÅA-D-CµÄ·¾¶Ô˶¯£¬ÄÇôµ±QµãµÄÔ˶¯Ê±¼ä·Ö±ðÊÇ1Ã룬4Ãëʱ£¬¡÷BCQµÄÃæ»ý¸÷ÊǶàÉÙ£¿ÇëÄã·Ö±ðÇó³öÀ´£®
·ÖÎö £¨1£©¸ù¾ÝA¡¢CÁ½µãµÄ×ø±êÒÔ¼°¾ØÐεÄÐÔÖÊ£¬¿ÉµÃµãAÓëµãB¹ØÓÚxÖá¶Ô³Æ£¬µãCÓëµãD¹ØÓÚxÖá¶Ô³Æ£¬½ø¶ø¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾Ýºá×ø±êÓÒÒÆ¼Ó£¬×óÒÆ¼õ£»×Ý×ø±êÉÏÒÆ¼Ó£¬ÏÂÒÆ¼õ£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©¡ß³¤·½ÐÎABCDµÄ±ßBC¡ÎxÖᣬAµã×ø±êÊÇ£¨-1£¬2$\sqrt{2}$£©£¬Cµã×ø±êÊÇ£¨3£¬-2$\sqrt{2}$£©£®
¡àµãAÓëµãB¹ØÓÚxÖá¶Ô³Æ£¬µãCÓëµãD¹ØÓÚxÖá¶Ô³Æ£¬
¡àµãBµÄ×ø±êÊÇ£¨-1£¬-2$\sqrt{2}$£©£¬µãDµÄ×ø±êÊÇ£¨3£¬2$\sqrt{2}$£©£®
¹Ê´ð°¸Îª-1£¬-2$\sqrt{2}$£»3£¬2$\sqrt{2}$£»¢Þ![]()
£¨2£©¡ßÕâ¸ö³¤·½ÐÎÏÈÏòÓÒÆ½ÒÆ1¸öµ¥Î»³¤¶È³¤¶È£¬ÔÙÏòÏÂÆ½ÒÆ$\sqrt{2}$¸öµ¥Î»³¤¶È£¬µÃµ½³¤·½ÐÎA1B1C1D1£¬
¡àA1£¨0£¬$\sqrt{2}$£©¡¢B1£¨0£¬-3$\sqrt{2}$£©¡¢C1£¨4£¬-3$\sqrt{2}$£©¡¢D1£¨4£¬$\sqrt{2}$£©£»
£¨3£©¸ù¾ÝÌâÒâµÃ£ºAB=CD=4$\sqrt{2}$£¬AD=BC=4£¬
Ô˶¯Ê±¼ä1Ãëʱ£¬µãQÔÚADÉÏ£¬ÔòS¡÷BCQ=$\frac{1}{2}$BC•AB=$\frac{1}{2}$¡Á4¡Á4$\sqrt{2}$=8$\sqrt{2}$£¬
Ô˶¯Ê±¼ä4Ãëʱ£¬Èçͼ£¬´ËʱµãAÔÚCDÉÏ£¬ÔòCQ=CD-DQ=4$\sqrt{2}$-£¨4$\sqrt{2}$-4£©=4£¬
¡àS¡÷BCQ=$\frac{1}{2}$BC•CQ=$\frac{1}{2}$¡Á4¡Á4=8£®
µãÆÀ ´ËÌ⿼²éÁË×ø±êÓëͼÐα仯-Æ½ÒÆ¡¢¾ØÐεÄÐÔÖÊÒÔ¼°¶¯µãÎÊÌ⣮עÒâÆ½ÒÆÖеãµÄ±ä»¯¹æÂÉÊÇ£ººá×ø±êÓÒÒÆ¼Ó£¬×óÒÆ¼õ£»×Ý×ø±êÉÏÒÆ¼Ó£¬ÏÂÒÆ¼õ£®
| ¡¡×î¸ßÆøÎ£¨¡æ£© | ¡¡21 | 22¡¡ | 25¡¡ | 24¡¡ | 23¡¡ | 26¡¡ |
| ¡¡ÌìÊý | ¡¡1 | 2¡¡ | 4¡¡ | 3¡¡ | 3¡¡ | 2¡¡ |
| A£® | 22 | B£® | 23 | C£® | 23.5 | D£® | 24 |
| A£® | x2-4x+5=x£¨x-4£©+5 | B£® | x2-2xy+y2=£¨x-y£©2 | ||
| C£® | x2+y2=£¨x+y£©2-2xy | D£® | £¨x+3£©£¨x-1£©+1=x2+2x-2 |
| A£® | x£¼-1 | B£® | x¡Ü1 | C£® | -1£¼x¡Ü1 | D£® | x¡Ý1 |